核物理变量计算外推问题中的机器学习

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
A. I. Mazur, R. E. Sharypov, A. M. Shirokov
{"title":"核物理变量计算外推问题中的机器学习","authors":"A. I. Mazur,&nbsp;R. E. Sharypov,&nbsp;A. M. Shirokov","doi":"10.3103/S0027134924700395","DOIUrl":null,"url":null,"abstract":"<p>A modified machine learning method is proposed, utilizing an ensemble of artificial neural networks for the extrapolation of energies obtained in variational calculations, specifically in the no-core shell model (NCSM), to the case of the infinite basis. A new neural network topology is employed, and criteria for selecting both the data used for training and the trained neural networks for statistical analysis of the results are formulated. The approach is tested by extrapolating the deutron ground state energy in calculations with the Nijmegen II <span>\\(NN\\)</span> interaction and provides statistically significant results. This technique is applied to obtain extrapolated ground state energies of <span>\\({}^{6}\\)</span>Li and <span>\\({}^{6}\\)</span>He nuclei based on the NCSM calculations with Daejeon16 <span>\\(NN\\)</span> interaction.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"79 3","pages":"318 - 329"},"PeriodicalIF":0.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning in the Problem of Extrapolating Variational Calculations in Nuclear Physics\",\"authors\":\"A. I. Mazur,&nbsp;R. E. Sharypov,&nbsp;A. M. Shirokov\",\"doi\":\"10.3103/S0027134924700395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A modified machine learning method is proposed, utilizing an ensemble of artificial neural networks for the extrapolation of energies obtained in variational calculations, specifically in the no-core shell model (NCSM), to the case of the infinite basis. A new neural network topology is employed, and criteria for selecting both the data used for training and the trained neural networks for statistical analysis of the results are formulated. The approach is tested by extrapolating the deutron ground state energy in calculations with the Nijmegen II <span>\\\\(NN\\\\)</span> interaction and provides statistically significant results. This technique is applied to obtain extrapolated ground state energies of <span>\\\\({}^{6}\\\\)</span>Li and <span>\\\\({}^{6}\\\\)</span>He nuclei based on the NCSM calculations with Daejeon16 <span>\\\\(NN\\\\)</span> interaction.</p>\",\"PeriodicalId\":711,\"journal\":{\"name\":\"Moscow University Physics Bulletin\",\"volume\":\"79 3\",\"pages\":\"318 - 329\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Physics Bulletin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027134924700395\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134924700395","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 提出了一种改进的机器学习方法,该方法利用人工神经网络集合,将变分计算(特别是无核壳模型(NCSM))中获得的能量外推到无限基础的情况。该方法采用了一种新的神经网络拓扑结构,并制定了选择用于训练的数据和用于结果统计分析的训练神经网络的标准。该方法通过外推奈梅亨 II (NN)相互作用计算中的中子基态能量进行了测试,并提供了具有统计意义的结果。这一技术被应用于基于大田16 (NNN)相互作用的NCSM计算,以获得外推的({}^{6})Li核和({}^{6})He核的基态能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning in the Problem of Extrapolating Variational Calculations in Nuclear Physics

Machine Learning in the Problem of Extrapolating Variational Calculations in Nuclear Physics

Machine Learning in the Problem of Extrapolating Variational Calculations in Nuclear Physics

A modified machine learning method is proposed, utilizing an ensemble of artificial neural networks for the extrapolation of energies obtained in variational calculations, specifically in the no-core shell model (NCSM), to the case of the infinite basis. A new neural network topology is employed, and criteria for selecting both the data used for training and the trained neural networks for statistical analysis of the results are formulated. The approach is tested by extrapolating the deutron ground state energy in calculations with the Nijmegen II \(NN\) interaction and provides statistically significant results. This technique is applied to obtain extrapolated ground state energies of \({}^{6}\)Li and \({}^{6}\)He nuclei based on the NCSM calculations with Daejeon16 \(NN\) interaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信