{"title":"MagWear:基于生物磁感应的生命体征监测系统","authors":"Xiuzhen Guo;Long Tan;Chaojie Gu;Yuanchao Shu;Shibo He;Jiming Chen","doi":"10.1109/TMC.2024.3452499","DOIUrl":null,"url":null,"abstract":"This paper presents the design, implementation, and evaluation of MagWear, a novel biomagnetism-based system that can accurately and inclusively monitor the heart rate, respiration rate, and blood pressure of users. MagWear's contributions are twofold. First, we build a mathematical model that characterizes the magnetic coupling effect of blood flow under the influence of an external magnetic field. This model uncovers the variations in accuracy when monitoring vital signs among individuals. Second, leveraging insights derived from this mathematical model, we present a software-hardware co-design that effectively handles the impact of human diversity on the performance of vital sign monitoring, pushing this generic solution one big step closer to real adoptions. Following IRB protocols, our extensive experiments involving 30 volunteers demonstrate that MagWear achieves high monitoring accuracy with a mean percentage error (MPE) of 1.55% for heart rate (HR), 1.79% for respiration rate (RR), 3.35% for systolic blood pressure (SBP), and 3.89% for diastolic blood pressure (DBP). MagWear can also be extended to detect anemia and blood oxygen saturation, which is also our ongoing work.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"23 12","pages":"14918-14933"},"PeriodicalIF":7.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MagWear: Vital Sign Monitoring Based on Biomagnetism Sensing\",\"authors\":\"Xiuzhen Guo;Long Tan;Chaojie Gu;Yuanchao Shu;Shibo He;Jiming Chen\",\"doi\":\"10.1109/TMC.2024.3452499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design, implementation, and evaluation of MagWear, a novel biomagnetism-based system that can accurately and inclusively monitor the heart rate, respiration rate, and blood pressure of users. MagWear's contributions are twofold. First, we build a mathematical model that characterizes the magnetic coupling effect of blood flow under the influence of an external magnetic field. This model uncovers the variations in accuracy when monitoring vital signs among individuals. Second, leveraging insights derived from this mathematical model, we present a software-hardware co-design that effectively handles the impact of human diversity on the performance of vital sign monitoring, pushing this generic solution one big step closer to real adoptions. Following IRB protocols, our extensive experiments involving 30 volunteers demonstrate that MagWear achieves high monitoring accuracy with a mean percentage error (MPE) of 1.55% for heart rate (HR), 1.79% for respiration rate (RR), 3.35% for systolic blood pressure (SBP), and 3.89% for diastolic blood pressure (DBP). MagWear can also be extended to detect anemia and blood oxygen saturation, which is also our ongoing work.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"23 12\",\"pages\":\"14918-14933\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10660525/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10660525/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
MagWear: Vital Sign Monitoring Based on Biomagnetism Sensing
This paper presents the design, implementation, and evaluation of MagWear, a novel biomagnetism-based system that can accurately and inclusively monitor the heart rate, respiration rate, and blood pressure of users. MagWear's contributions are twofold. First, we build a mathematical model that characterizes the magnetic coupling effect of blood flow under the influence of an external magnetic field. This model uncovers the variations in accuracy when monitoring vital signs among individuals. Second, leveraging insights derived from this mathematical model, we present a software-hardware co-design that effectively handles the impact of human diversity on the performance of vital sign monitoring, pushing this generic solution one big step closer to real adoptions. Following IRB protocols, our extensive experiments involving 30 volunteers demonstrate that MagWear achieves high monitoring accuracy with a mean percentage error (MPE) of 1.55% for heart rate (HR), 1.79% for respiration rate (RR), 3.35% for systolic blood pressure (SBP), and 3.89% for diastolic blood pressure (DBP). MagWear can also be extended to detect anemia and blood oxygen saturation, which is also our ongoing work.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.