具有内嵌特征值的准锥域

IF 0.8 3区 数学 Q2 MATHEMATICS
David Krejčiřík, Vladimir Lotoreichik
{"title":"具有内嵌特征值的准锥域","authors":"David Krejčiřík,&nbsp;Vladimir Lotoreichik","doi":"10.1112/blms.13113","DOIUrl":null,"url":null,"abstract":"<p>The spectrum of the Dirichlet Laplacian on any quasi-conical open set coincides with the non-negative semi-axis. We show that there is a connected quasi-conical open set such that the respective Dirichlet Laplacian has a positive (embedded) eigenvalue. This open set is constructed as the tower of cubes of growing size connected by windows of vanishing size. Moreover, we show that the sizes of the windows in this construction can be chosen so that the absolutely continuous spectrum of the Dirichlet Laplacian is empty.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2969-2981"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-conical domains with embedded eigenvalues\",\"authors\":\"David Krejčiřík,&nbsp;Vladimir Lotoreichik\",\"doi\":\"10.1112/blms.13113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The spectrum of the Dirichlet Laplacian on any quasi-conical open set coincides with the non-negative semi-axis. We show that there is a connected quasi-conical open set such that the respective Dirichlet Laplacian has a positive (embedded) eigenvalue. This open set is constructed as the tower of cubes of growing size connected by windows of vanishing size. Moreover, we show that the sizes of the windows in this construction can be chosen so that the absolutely continuous spectrum of the Dirichlet Laplacian is empty.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 9\",\"pages\":\"2969-2981\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13113\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13113","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

任何准锥开集上的 Dirichlet 拉普拉斯频谱都与非负半轴重合。我们证明,存在一个连通的准圆锥开集,使得相应的 Dirichlet 拉普拉奇有一个正(嵌入)特征值。这个开集被构造成由大小不断消失的窗口连接的大小不断增大的立方体塔。此外,我们还证明,在这种构造中,可以选择窗口的大小,从而使 Dirichlet 拉普拉斯绝对连续谱为空。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-conical domains with embedded eigenvalues

The spectrum of the Dirichlet Laplacian on any quasi-conical open set coincides with the non-negative semi-axis. We show that there is a connected quasi-conical open set such that the respective Dirichlet Laplacian has a positive (embedded) eigenvalue. This open set is constructed as the tower of cubes of growing size connected by windows of vanishing size. Moreover, we show that the sizes of the windows in this construction can be chosen so that the absolutely continuous spectrum of the Dirichlet Laplacian is empty.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信