Guiyeoul Lim, Donato Calabrese, Allison Wolder, Paul R. F. Cordero, Dörte Rother, Florian F. Mulks, Caroline E. Paul, Lars Lauterbach
{"title":"利用水电解产生的 H2,在连续闭环流动系统中进行黄素依赖性烯还原的 H2 驱动生物催化反应。","authors":"Guiyeoul Lim, Donato Calabrese, Allison Wolder, Paul R. F. Cordero, Dörte Rother, Florian F. Mulks, Caroline E. Paul, Lars Lauterbach","doi":"10.1038/s42004-024-01288-y","DOIUrl":null,"url":null,"abstract":"Despite the increasing demand for efficient and sustainable chemical processes, the development of scalable systems using biocatalysis for fine chemical production remains a significant challenge. We have developed a scalable flow system using immobilized enzymes to facilitate flavin-dependent biocatalysis, targeting as a proof-of-concept asymmetric alkene reduction. The system integrates a flavin-dependent Old Yellow Enzyme (OYE) and a soluble hydrogenase to enable H2-driven regeneration of the OYE cofactor FMNH2. Molecular hydrogen was produced by water electrolysis using a proton exchange membrane (PEM) electrolyzer and introduced into the flow system via a designed gas membrane addition module at a high diffusion rate. The flow system shows remarkable stability and reusability, consistently achieving >99% conversion of ketoisophorone to levodione. It also demonstrates versatility and selectivity in reducing various cyclic enones and can be extended to further flavin-based biocatalytic approaches and gas-dependent reactions. This electro-driven continuous flow system, therefore, has significant potential for advancing sustainable processes in fine chemical synthesis. Flavin-based biocatalysis using flavin mononucleotide (FMN) cofactor attracts significant attention for its application in asymmetric alkene reduction and various other reactions, however, the scale-up of flavin-based biocatalysis in flow remains unexplored. Here, the authors develop a closed-loop flow platform for H2-driven regeneration of cofactor FMNH2 and ene-reduction using immobilized Old Yellow Enzyme, achieving >99% conversion of ketoisophorone to levodione.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-7"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01288-y.pdf","citationCount":"0","resultStr":"{\"title\":\"H2-driven biocatalysis for flavin-dependent ene-reduction in a continuous closed-loop flow system utilizing H2 from water electrolysis\",\"authors\":\"Guiyeoul Lim, Donato Calabrese, Allison Wolder, Paul R. F. Cordero, Dörte Rother, Florian F. Mulks, Caroline E. Paul, Lars Lauterbach\",\"doi\":\"10.1038/s42004-024-01288-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the increasing demand for efficient and sustainable chemical processes, the development of scalable systems using biocatalysis for fine chemical production remains a significant challenge. We have developed a scalable flow system using immobilized enzymes to facilitate flavin-dependent biocatalysis, targeting as a proof-of-concept asymmetric alkene reduction. The system integrates a flavin-dependent Old Yellow Enzyme (OYE) and a soluble hydrogenase to enable H2-driven regeneration of the OYE cofactor FMNH2. Molecular hydrogen was produced by water electrolysis using a proton exchange membrane (PEM) electrolyzer and introduced into the flow system via a designed gas membrane addition module at a high diffusion rate. The flow system shows remarkable stability and reusability, consistently achieving >99% conversion of ketoisophorone to levodione. It also demonstrates versatility and selectivity in reducing various cyclic enones and can be extended to further flavin-based biocatalytic approaches and gas-dependent reactions. This electro-driven continuous flow system, therefore, has significant potential for advancing sustainable processes in fine chemical synthesis. Flavin-based biocatalysis using flavin mononucleotide (FMN) cofactor attracts significant attention for its application in asymmetric alkene reduction and various other reactions, however, the scale-up of flavin-based biocatalysis in flow remains unexplored. Here, the authors develop a closed-loop flow platform for H2-driven regeneration of cofactor FMNH2 and ene-reduction using immobilized Old Yellow Enzyme, achieving >99% conversion of ketoisophorone to levodione.\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42004-024-01288-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s42004-024-01288-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01288-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
H2-driven biocatalysis for flavin-dependent ene-reduction in a continuous closed-loop flow system utilizing H2 from water electrolysis
Despite the increasing demand for efficient and sustainable chemical processes, the development of scalable systems using biocatalysis for fine chemical production remains a significant challenge. We have developed a scalable flow system using immobilized enzymes to facilitate flavin-dependent biocatalysis, targeting as a proof-of-concept asymmetric alkene reduction. The system integrates a flavin-dependent Old Yellow Enzyme (OYE) and a soluble hydrogenase to enable H2-driven regeneration of the OYE cofactor FMNH2. Molecular hydrogen was produced by water electrolysis using a proton exchange membrane (PEM) electrolyzer and introduced into the flow system via a designed gas membrane addition module at a high diffusion rate. The flow system shows remarkable stability and reusability, consistently achieving >99% conversion of ketoisophorone to levodione. It also demonstrates versatility and selectivity in reducing various cyclic enones and can be extended to further flavin-based biocatalytic approaches and gas-dependent reactions. This electro-driven continuous flow system, therefore, has significant potential for advancing sustainable processes in fine chemical synthesis. Flavin-based biocatalysis using flavin mononucleotide (FMN) cofactor attracts significant attention for its application in asymmetric alkene reduction and various other reactions, however, the scale-up of flavin-based biocatalysis in flow remains unexplored. Here, the authors develop a closed-loop flow platform for H2-driven regeneration of cofactor FMNH2 and ene-reduction using immobilized Old Yellow Enzyme, achieving >99% conversion of ketoisophorone to levodione.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.