热辐射条件下液态储罐相变过程中物理过程与化学反应的耦合机制

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL
{"title":"热辐射条件下液态储罐相变过程中物理过程与化学反应的耦合机制","authors":"","doi":"10.1016/j.psep.2024.09.015","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses one of the knowledge gaps in liquid tank safety, i.e., the assessment of the coupling hazards between physical processes and chemical reactions in liquid tanks under transient high temperatures. If the phase transition process of the liquid storage tank occurs simultaneously with a gaseous explosion, a significantly more intense energy release will be generated within the tank. However, due to the challenges of numerical calculations and the complexities of experimental design, current research has yet to explore the potential hazards associated with the explosion of vapor and air within liquid storage tanks. A novel numerical model has been established to simulate the coupled processes of phase transitions and chemical reactions in this research. The findings indicate that phase transition and chemical reactions commence at the intersection of the two-phase interfaces and the tank walls. After the cessation of transient high temperature, the upward trend in pressure and temperature within the tank will persist for a certain duration. As the radiation temperature rises and the duration extends, phase transition and chemical reactions within the liquid tank occur increasingly earlier. The duration of the chemical reactions decreases as the radiation temperature increases and the duration extends; however, the molar concentration of reactants consumed during the reaction does not exhibit a monotonic change. The intersection of the high-temperature hazard zone and the premixed hazard zone, where both ignition energy and concentration conditions are met, can lead to intense chemical reactions. As the radiation temperature rises, the ignition energy also increases; however, this leads to greater instability in the premixed hazard zone, thereby increasing the likelihood of secondary explosions.</p></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling mechanism of physical processes and chemical reactions during phase transition in liquid tanks under thermal radiation\",\"authors\":\"\",\"doi\":\"10.1016/j.psep.2024.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study addresses one of the knowledge gaps in liquid tank safety, i.e., the assessment of the coupling hazards between physical processes and chemical reactions in liquid tanks under transient high temperatures. If the phase transition process of the liquid storage tank occurs simultaneously with a gaseous explosion, a significantly more intense energy release will be generated within the tank. However, due to the challenges of numerical calculations and the complexities of experimental design, current research has yet to explore the potential hazards associated with the explosion of vapor and air within liquid storage tanks. A novel numerical model has been established to simulate the coupled processes of phase transitions and chemical reactions in this research. The findings indicate that phase transition and chemical reactions commence at the intersection of the two-phase interfaces and the tank walls. After the cessation of transient high temperature, the upward trend in pressure and temperature within the tank will persist for a certain duration. As the radiation temperature rises and the duration extends, phase transition and chemical reactions within the liquid tank occur increasingly earlier. The duration of the chemical reactions decreases as the radiation temperature increases and the duration extends; however, the molar concentration of reactants consumed during the reaction does not exhibit a monotonic change. The intersection of the high-temperature hazard zone and the premixed hazard zone, where both ignition energy and concentration conditions are met, can lead to intense chemical reactions. As the radiation temperature rises, the ignition energy also increases; however, this leads to greater instability in the premixed hazard zone, thereby increasing the likelihood of secondary explosions.</p></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957582024011340\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024011340","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究解决了液体储罐安全方面的一个知识空白,即评估瞬态高温下液体储罐中物理过程和化学反应之间的耦合危害。如果液体储罐的相变过程与气态爆炸同时发生,储罐内将产生明显更强烈的能量释放。然而,由于数值计算的挑战和实验设计的复杂性,目前的研究尚未探索液体储罐内蒸汽和空气爆炸的潜在危害。本研究建立了一个新的数值模型来模拟相变和化学反应的耦合过程。研究结果表明,相变和化学反应始于两相界面与储罐壁的交汇处。瞬态高温停止后,罐内压力和温度的上升趋势会持续一段时间。随着辐射温度的升高和持续时间的延长,液槽内的相变和化学反应会越来越早地发生。随着辐射温度的升高和持续时间的延长,化学反应的持续时间会缩短;但是,反应过程中消耗的反应物摩尔浓度不会出现单调变化。在高温危险区和预混合危险区的交汇处,同时满足点火能量和浓度条件时,会发生激烈的化学反应。随着辐射温度的升高,点火能量也会增加;但这会导致预混危险区更加不稳定,从而增加发生二次爆炸的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling mechanism of physical processes and chemical reactions during phase transition in liquid tanks under thermal radiation

This study addresses one of the knowledge gaps in liquid tank safety, i.e., the assessment of the coupling hazards between physical processes and chemical reactions in liquid tanks under transient high temperatures. If the phase transition process of the liquid storage tank occurs simultaneously with a gaseous explosion, a significantly more intense energy release will be generated within the tank. However, due to the challenges of numerical calculations and the complexities of experimental design, current research has yet to explore the potential hazards associated with the explosion of vapor and air within liquid storage tanks. A novel numerical model has been established to simulate the coupled processes of phase transitions and chemical reactions in this research. The findings indicate that phase transition and chemical reactions commence at the intersection of the two-phase interfaces and the tank walls. After the cessation of transient high temperature, the upward trend in pressure and temperature within the tank will persist for a certain duration. As the radiation temperature rises and the duration extends, phase transition and chemical reactions within the liquid tank occur increasingly earlier. The duration of the chemical reactions decreases as the radiation temperature increases and the duration extends; however, the molar concentration of reactants consumed during the reaction does not exhibit a monotonic change. The intersection of the high-temperature hazard zone and the premixed hazard zone, where both ignition energy and concentration conditions are met, can lead to intense chemical reactions. As the radiation temperature rises, the ignition energy also increases; however, this leads to greater instability in the premixed hazard zone, thereby increasing the likelihood of secondary explosions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信