全彩虹连接和禁止子图

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jingshu Zhang , Hui Jiang , Wenjing Li
{"title":"全彩虹连接和禁止子图","authors":"Jingshu Zhang ,&nbsp;Hui Jiang ,&nbsp;Wenjing Li","doi":"10.1016/j.dam.2024.07.051","DOIUrl":null,"url":null,"abstract":"<div><p>A path in a total-colored graph <span><math><mi>G</mi></math></span> is called a <em>total-rainbow path</em> if its edges and internal vertices have distinct colors. The total-colored graph <span><math><mi>G</mi></math></span> is <em>total-rainbow connected</em> if for any two distinct vertices of <span><math><mi>G</mi></math></span>, there is a total-rainbow path connecting them. The <em>total-rainbow connection number</em> of <span><math><mi>G</mi></math></span>, denoted as <span><math><mrow><mi>t</mi><mi>r</mi><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, represents the minimum number of colors that are required to make <span><math><mi>G</mi></math></span> total-rainbow connected. This paper characterizes all the families <span><math><mi>F</mi></math></span> of connected graphs with <span><math><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>, for which there exists a constant <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> such that <span><math><mi>G</mi></math></span> being a connected <span><math><mi>F</mi></math></span>-free graph implies <span><math><mrow><mi>t</mi><mi>r</mi><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>d</mi><mi>i</mi><mi>a</mi><mi>m</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>F</mi></mrow></msub></mrow></math></span>, where <span><math><mrow><mi>d</mi><mi>i</mi><mi>a</mi><mi>m</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the diameter of <span><math><mi>G</mi></math></span>.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"359 ","pages":"Pages 364-370"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total-rainbow connection and forbidden subgraphs\",\"authors\":\"Jingshu Zhang ,&nbsp;Hui Jiang ,&nbsp;Wenjing Li\",\"doi\":\"10.1016/j.dam.2024.07.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A path in a total-colored graph <span><math><mi>G</mi></math></span> is called a <em>total-rainbow path</em> if its edges and internal vertices have distinct colors. The total-colored graph <span><math><mi>G</mi></math></span> is <em>total-rainbow connected</em> if for any two distinct vertices of <span><math><mi>G</mi></math></span>, there is a total-rainbow path connecting them. The <em>total-rainbow connection number</em> of <span><math><mi>G</mi></math></span>, denoted as <span><math><mrow><mi>t</mi><mi>r</mi><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, represents the minimum number of colors that are required to make <span><math><mi>G</mi></math></span> total-rainbow connected. This paper characterizes all the families <span><math><mi>F</mi></math></span> of connected graphs with <span><math><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>, for which there exists a constant <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> such that <span><math><mi>G</mi></math></span> being a connected <span><math><mi>F</mi></math></span>-free graph implies <span><math><mrow><mi>t</mi><mi>r</mi><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>d</mi><mi>i</mi><mi>a</mi><mi>m</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>F</mi></mrow></msub></mrow></math></span>, where <span><math><mrow><mi>d</mi><mi>i</mi><mi>a</mi><mi>m</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the diameter of <span><math><mi>G</mi></math></span>.</p></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"359 \",\"pages\":\"Pages 364-370\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003524\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003524","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

如果全彩色图 G 中的边和内部顶点都有不同的颜色,则该图中的路径称为全彩虹路径。如果对于 G 中任意两个不同的顶点,存在一条连接它们的全彩虹路径,那么全彩色图 G 就是全彩虹连接图。G 的全彩虹连接数表示使 G 全彩虹连接所需的最少颜色数,用 trc(G) 表示。本文描述了|F|∈{1,2}的所有连通图族 F,对于这些族 F,存在一个常数 kF,使得 G 作为无 F 连通图意味着 trc(G)≤2diam(G)+kF,其中 diam(G) 表示 G 的直径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Total-rainbow connection and forbidden subgraphs

A path in a total-colored graph G is called a total-rainbow path if its edges and internal vertices have distinct colors. The total-colored graph G is total-rainbow connected if for any two distinct vertices of G, there is a total-rainbow path connecting them. The total-rainbow connection number of G, denoted as trc(G), represents the minimum number of colors that are required to make G total-rainbow connected. This paper characterizes all the families F of connected graphs with |F|{1,2}, for which there exists a constant kF such that G being a connected F-free graph implies trc(G)2diam(G)+kF, where diam(G) denotes the diameter of G.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信