用于促进渗透能量转换的三维水凝胶膜:锆离子交联诱导的空间限制和电荷调节

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Caiqin Wu , Jian Wang , Rong Wu , Huan Zeng , Xianfei Chen , Chenling Yao , Jialing Zhou , Xiang-Yu Kong , Liping Wen , Lei Jiang
{"title":"用于促进渗透能量转换的三维水凝胶膜:锆离子交联诱导的空间限制和电荷调节","authors":"Caiqin Wu ,&nbsp;Jian Wang ,&nbsp;Rong Wu ,&nbsp;Huan Zeng ,&nbsp;Xianfei Chen ,&nbsp;Chenling Yao ,&nbsp;Jialing Zhou ,&nbsp;Xiang-Yu Kong ,&nbsp;Liping Wen ,&nbsp;Lei Jiang","doi":"10.1016/j.nantod.2024.102468","DOIUrl":null,"url":null,"abstract":"<div><p>Ion-exchange membranes have been widely used to harvest osmotic energy in the past decades. However, conventional ion-exchange membranes suffer from low output power and poor conversion efficiency due to their limited pores and high membrane resistance. Herein, a sodium alginate (SA)/3-sulfopropyl acrylate potassium salt (SPAK) hydrogel membrane which has good cationic selectivity and can effectively harvest osmotic energy is designed, yielding a maximum power density of 16.44 W/m<sup>2</sup> under a 50-fold NaCl concentration gradient and 36.85 W/m<sup>2</sup> with ion selectivity of 0.73 at 500-fold. Furthermore, by introducing Zr<sup>4+</sup>, post-crosslinking reaction was employed to prepare tougher hydrogel membranes at room temperature for breaking a trade-off between selectivity and permeability, boosting a maximum power density up to 25.07 W/m<sup>2</sup> under a 50-fold NaCl concentration gradient and 121.66 W/m<sup>2</sup> with a high cation selectivity of 0.87 at 500-fold. Importantly, the resultant SA/SPAK/Zr<sup>4+</sup> membrane reveals excellent osmotic energy harvesting property with the largest thickness of 500 μm, exceeding other reported porous nanofluidic membranes. Theoretical calculations correlate the enhanced power density of SA/SPAK/Zr<sup>4+</sup> membranes with the enriched Cl<sup>-</sup> and smaller pore size after the introduction of Zr<sup>4+</sup>. This work paves an avenue to design and develop the 3D hydrogel membranes for high-performance osmotic energy generators.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"58 ","pages":"Article 102468"},"PeriodicalIF":13.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional hydrogel membranes for boosting osmotic energy conversion: Spatial confinement and charge regulation induced by zirconium ion crosslinking\",\"authors\":\"Caiqin Wu ,&nbsp;Jian Wang ,&nbsp;Rong Wu ,&nbsp;Huan Zeng ,&nbsp;Xianfei Chen ,&nbsp;Chenling Yao ,&nbsp;Jialing Zhou ,&nbsp;Xiang-Yu Kong ,&nbsp;Liping Wen ,&nbsp;Lei Jiang\",\"doi\":\"10.1016/j.nantod.2024.102468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ion-exchange membranes have been widely used to harvest osmotic energy in the past decades. However, conventional ion-exchange membranes suffer from low output power and poor conversion efficiency due to their limited pores and high membrane resistance. Herein, a sodium alginate (SA)/3-sulfopropyl acrylate potassium salt (SPAK) hydrogel membrane which has good cationic selectivity and can effectively harvest osmotic energy is designed, yielding a maximum power density of 16.44 W/m<sup>2</sup> under a 50-fold NaCl concentration gradient and 36.85 W/m<sup>2</sup> with ion selectivity of 0.73 at 500-fold. Furthermore, by introducing Zr<sup>4+</sup>, post-crosslinking reaction was employed to prepare tougher hydrogel membranes at room temperature for breaking a trade-off between selectivity and permeability, boosting a maximum power density up to 25.07 W/m<sup>2</sup> under a 50-fold NaCl concentration gradient and 121.66 W/m<sup>2</sup> with a high cation selectivity of 0.87 at 500-fold. Importantly, the resultant SA/SPAK/Zr<sup>4+</sup> membrane reveals excellent osmotic energy harvesting property with the largest thickness of 500 μm, exceeding other reported porous nanofluidic membranes. Theoretical calculations correlate the enhanced power density of SA/SPAK/Zr<sup>4+</sup> membranes with the enriched Cl<sup>-</sup> and smaller pore size after the introduction of Zr<sup>4+</sup>. This work paves an avenue to design and develop the 3D hydrogel membranes for high-performance osmotic energy generators.</p></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"58 \",\"pages\":\"Article 102468\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224003244\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003244","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过去几十年来,离子交换膜被广泛用于获取渗透能。然而,传统的离子交换膜由于孔隙有限、膜阻力大,因此输出功率低、转换效率差。本文设计了一种海藻酸钠(SA)/3-磺丙基丙烯酸酯钾盐(SPAK)水凝胶膜,它具有良好的阳离子选择性,能有效收集渗透能,在 50 倍 NaCl 浓度梯度下的最大功率密度为 16.44 W/m2,在 500 倍离子选择性为 0.73 时的最大功率密度为 36.85 W/m2。此外,通过引入 Zr4+,利用后交联反应在室温下制备出更坚韧的水凝胶膜,打破了选择性和渗透性之间的权衡,在 50 倍 NaCl 浓度梯度下,最大功率密度提高到 25.07 W/m2,在 500 倍离子浓度梯度下,最大功率密度提高到 121.66 W/m2,阳离子选择性高达 0.87。重要的是,所制备的 SA/SPAK/Zr4+ 膜具有出色的渗透能收集特性,最大厚度达 500 μm,超过了其他已报道的多孔纳米流体膜。理论计算表明,SA/SPAK/Zr4+ 膜功率密度的提高与引入 Zr4+ 后富集的 Cl- 和更小的孔径有关。这项工作为设计和开发用于高性能渗透能量发生器的三维水凝胶膜铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional hydrogel membranes for boosting osmotic energy conversion: Spatial confinement and charge regulation induced by zirconium ion crosslinking

Ion-exchange membranes have been widely used to harvest osmotic energy in the past decades. However, conventional ion-exchange membranes suffer from low output power and poor conversion efficiency due to their limited pores and high membrane resistance. Herein, a sodium alginate (SA)/3-sulfopropyl acrylate potassium salt (SPAK) hydrogel membrane which has good cationic selectivity and can effectively harvest osmotic energy is designed, yielding a maximum power density of 16.44 W/m2 under a 50-fold NaCl concentration gradient and 36.85 W/m2 with ion selectivity of 0.73 at 500-fold. Furthermore, by introducing Zr4+, post-crosslinking reaction was employed to prepare tougher hydrogel membranes at room temperature for breaking a trade-off between selectivity and permeability, boosting a maximum power density up to 25.07 W/m2 under a 50-fold NaCl concentration gradient and 121.66 W/m2 with a high cation selectivity of 0.87 at 500-fold. Importantly, the resultant SA/SPAK/Zr4+ membrane reveals excellent osmotic energy harvesting property with the largest thickness of 500 μm, exceeding other reported porous nanofluidic membranes. Theoretical calculations correlate the enhanced power density of SA/SPAK/Zr4+ membranes with the enriched Cl- and smaller pore size after the introduction of Zr4+. This work paves an avenue to design and develop the 3D hydrogel membranes for high-performance osmotic energy generators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信