Fahren Fazzer Sukatis , Muhammad Raznisyafiq Razak , Ley Juen Looi , Hong Ngee Lim , Mohd Basyaruddin Abdul Rahman , Ahmad Zaharin Aris
{"title":"利用新型钙基金属有机框架同时吸附痕量浓度的特定内分泌干扰化合物","authors":"Fahren Fazzer Sukatis , Muhammad Raznisyafiq Razak , Ley Juen Looi , Hong Ngee Lim , Mohd Basyaruddin Abdul Rahman , Ahmad Zaharin Aris","doi":"10.1016/j.micromeso.2024.113316","DOIUrl":null,"url":null,"abstract":"<div><p>The existence of newly identified water contaminants, such as endocrine-disrupting substances (EDCs), in polluted water sources represents substantial environmental and health concerns. Over novel mixed-linker porous calcium-based metal-organic frameworks (Ca-MIX), the simultaneous adsorptive removal of 17-ethynylestradiol (EE2), perfluorooctanoic acid (PFOA), and bisphenol A (BPA) from aqueous solutions has been studied in terms of adsorption kinetics, adsorption isotherms, and water chemistry effects. The adsorption isotherm and kinetics fit the Langmuir model well and followed pseudo-second-order kinetics. Generally, all three compounds adsorb over Ca-MIX depending on the chemical properties of both the adsorbate–adsorbent and water matrix chemistry. Electrostatic and hydrophobic interactions may explain the adsorption mechanism between EDCs and Ca-MIX. The order from the best to worst removal efficiency was EE2 > PFOA > BPA when Ca-MIX was used as the adsorbent. In conclusion, it can be suggested that this material could be used as an adsorbent capable of removing harmful emerging contaminants in water at trace exposure levels.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"380 ","pages":"Article 113316"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous adsorption of selected endocrine-disrupting compounds at trace level of concentration by using novel calcium-based metal-organic framework\",\"authors\":\"Fahren Fazzer Sukatis , Muhammad Raznisyafiq Razak , Ley Juen Looi , Hong Ngee Lim , Mohd Basyaruddin Abdul Rahman , Ahmad Zaharin Aris\",\"doi\":\"10.1016/j.micromeso.2024.113316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The existence of newly identified water contaminants, such as endocrine-disrupting substances (EDCs), in polluted water sources represents substantial environmental and health concerns. Over novel mixed-linker porous calcium-based metal-organic frameworks (Ca-MIX), the simultaneous adsorptive removal of 17-ethynylestradiol (EE2), perfluorooctanoic acid (PFOA), and bisphenol A (BPA) from aqueous solutions has been studied in terms of adsorption kinetics, adsorption isotherms, and water chemistry effects. The adsorption isotherm and kinetics fit the Langmuir model well and followed pseudo-second-order kinetics. Generally, all three compounds adsorb over Ca-MIX depending on the chemical properties of both the adsorbate–adsorbent and water matrix chemistry. Electrostatic and hydrophobic interactions may explain the adsorption mechanism between EDCs and Ca-MIX. The order from the best to worst removal efficiency was EE2 > PFOA > BPA when Ca-MIX was used as the adsorbent. In conclusion, it can be suggested that this material could be used as an adsorbent capable of removing harmful emerging contaminants in water at trace exposure levels.</p></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"380 \",\"pages\":\"Article 113316\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138718112400338X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138718112400338X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Simultaneous adsorption of selected endocrine-disrupting compounds at trace level of concentration by using novel calcium-based metal-organic framework
The existence of newly identified water contaminants, such as endocrine-disrupting substances (EDCs), in polluted water sources represents substantial environmental and health concerns. Over novel mixed-linker porous calcium-based metal-organic frameworks (Ca-MIX), the simultaneous adsorptive removal of 17-ethynylestradiol (EE2), perfluorooctanoic acid (PFOA), and bisphenol A (BPA) from aqueous solutions has been studied in terms of adsorption kinetics, adsorption isotherms, and water chemistry effects. The adsorption isotherm and kinetics fit the Langmuir model well and followed pseudo-second-order kinetics. Generally, all three compounds adsorb over Ca-MIX depending on the chemical properties of both the adsorbate–adsorbent and water matrix chemistry. Electrostatic and hydrophobic interactions may explain the adsorption mechanism between EDCs and Ca-MIX. The order from the best to worst removal efficiency was EE2 > PFOA > BPA when Ca-MIX was used as the adsorbent. In conclusion, it can be suggested that this material could be used as an adsorbent capable of removing harmful emerging contaminants in water at trace exposure levels.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.