{"title":"空腔电磁系统的动态相场模型","authors":"Shihao Zhuang, Yujie Zhu, Changchun Zhong, Liang Jiang, Xufeng Zhang, Jia-Mian Hu","doi":"10.1038/s41524-024-01380-w","DOIUrl":null,"url":null,"abstract":"<p>Cavity electromagnonic system, which simultaneously consists of cavities for photons, magnons (quanta of spin waves), and acoustic phonons, provides an exciting platform to achieve coherent energy transduction among different physical systems down to single quantum level. Here we report a dynamical phase-field model that allows simulating the coupled dynamics of the electromagnetic waves, magnetization, and strain in 3D multiphase systems. As examples of application, we computationally demonstrate the excitation of hybrid magnon-photon modes (magnon polaritons), Floquet-induced magnonic Aulter-Townes splitting, dynamical energy exchange (Rabi oscillation) and relative phase control (Ramsey interference) between the two magnon polariton modes. The simulation results are consistent with analytical calculations based on Floquet Hamiltonian theory. Simulations are also performed to design a cavity electro-magno-mechanical system that enables the triple phonon-magnon-photon resonance, where the resonant excitation of a chiral, fundamental (<i>n</i> = 1) transverse acoustic phonon mode by magnon polaritons is demonstrated. With the capability to predict coupling strength, dissipation rates, and temporal evolution of photon/magnon/phonon mode profiles using fundamental materials parameters as the inputs, the present dynamical phase-field model represents a valuable computational tool to guide the fabrication of the cavity electromagnonic system and the design of operating conditions for applications in quantum sensing, transduction, and communication.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"11 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical phase-field model of cavity electromagnonic systems\",\"authors\":\"Shihao Zhuang, Yujie Zhu, Changchun Zhong, Liang Jiang, Xufeng Zhang, Jia-Mian Hu\",\"doi\":\"10.1038/s41524-024-01380-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cavity electromagnonic system, which simultaneously consists of cavities for photons, magnons (quanta of spin waves), and acoustic phonons, provides an exciting platform to achieve coherent energy transduction among different physical systems down to single quantum level. Here we report a dynamical phase-field model that allows simulating the coupled dynamics of the electromagnetic waves, magnetization, and strain in 3D multiphase systems. As examples of application, we computationally demonstrate the excitation of hybrid magnon-photon modes (magnon polaritons), Floquet-induced magnonic Aulter-Townes splitting, dynamical energy exchange (Rabi oscillation) and relative phase control (Ramsey interference) between the two magnon polariton modes. The simulation results are consistent with analytical calculations based on Floquet Hamiltonian theory. Simulations are also performed to design a cavity electro-magno-mechanical system that enables the triple phonon-magnon-photon resonance, where the resonant excitation of a chiral, fundamental (<i>n</i> = 1) transverse acoustic phonon mode by magnon polaritons is demonstrated. With the capability to predict coupling strength, dissipation rates, and temporal evolution of photon/magnon/phonon mode profiles using fundamental materials parameters as the inputs, the present dynamical phase-field model represents a valuable computational tool to guide the fabrication of the cavity electromagnonic system and the design of operating conditions for applications in quantum sensing, transduction, and communication.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01380-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01380-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Dynamical phase-field model of cavity electromagnonic systems
Cavity electromagnonic system, which simultaneously consists of cavities for photons, magnons (quanta of spin waves), and acoustic phonons, provides an exciting platform to achieve coherent energy transduction among different physical systems down to single quantum level. Here we report a dynamical phase-field model that allows simulating the coupled dynamics of the electromagnetic waves, magnetization, and strain in 3D multiphase systems. As examples of application, we computationally demonstrate the excitation of hybrid magnon-photon modes (magnon polaritons), Floquet-induced magnonic Aulter-Townes splitting, dynamical energy exchange (Rabi oscillation) and relative phase control (Ramsey interference) between the two magnon polariton modes. The simulation results are consistent with analytical calculations based on Floquet Hamiltonian theory. Simulations are also performed to design a cavity electro-magno-mechanical system that enables the triple phonon-magnon-photon resonance, where the resonant excitation of a chiral, fundamental (n = 1) transverse acoustic phonon mode by magnon polaritons is demonstrated. With the capability to predict coupling strength, dissipation rates, and temporal evolution of photon/magnon/phonon mode profiles using fundamental materials parameters as the inputs, the present dynamical phase-field model represents a valuable computational tool to guide the fabrication of the cavity electromagnonic system and the design of operating conditions for applications in quantum sensing, transduction, and communication.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.