超越传统的过氧化物:氙对 K4Xe3O12 振动和电子特性的影响

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Supratik Mukherjee, G Vaitheeswaran
{"title":"超越传统的过氧化物:氙对 K4Xe3O12 振动和电子特性的影响","authors":"Supratik Mukherjee, G Vaitheeswaran","doi":"10.1002/adts.202400545","DOIUrl":null,"url":null,"abstract":"The perovskite structure is one of the most fascinating configurations existing in nature, with its physical and chemical properties heavily influenced by the nature and oxidation states of cations, stoichiometry, and crystalline structure. Layered perovskite material K<sub>4</sub>Xe<sub>3</sub>O<sub>12</sub>, an interesting member of this family, possesses energetic properties that require detailed investigation. To establish the governing principles and quantify the observed behaviors, a detailed computational investigation is conducted into the electronic, vibrational, structural, and optical characteristics of K<sub>4</sub>Xe<sub>3</sub>O<sub>12</sub>, utilizing Density Functional Theory (DFT) calculations. The calculated elastic constants adhere to Born's criteria, affirming the mechanical stability of trigonal K<sub>4</sub>Xe<sub>3</sub>O<sub>12</sub>, with a bulk modulus (B<sub>o</sub>) of ≈53.93 GPa. This low compressibility is intricately tied to its robust perovskite structure, featuring XeO<sub>6</sub> octahedra sandwiched between XeO<sub>3</sub> molecules. Precise determination of the valence-conduction bandgap is crucial for understanding potential connections to the photodecomposition phenomenon. Using the Tran-Blaha-modified Becke-Johnson (TB-mB) potential alongside traditional generalized gradient approximation (GGA) approach, a bandgap of ≈1.32 eV is determined. Rapid fluctuations in optical properties also suggest a propensity for photodecomposition in the visible spectrum. The study provides critical insights into perovskite materials, especially those containing noble gas atoms, unveiling unique chemical and physical properties that open up new avenues for versatile applications across various fields.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"2014 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond Traditional Perovskites: Xenon's Influence on the Vibrational and Electronic Properties of K4Xe3O12\",\"authors\":\"Supratik Mukherjee, G Vaitheeswaran\",\"doi\":\"10.1002/adts.202400545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The perovskite structure is one of the most fascinating configurations existing in nature, with its physical and chemical properties heavily influenced by the nature and oxidation states of cations, stoichiometry, and crystalline structure. Layered perovskite material K<sub>4</sub>Xe<sub>3</sub>O<sub>12</sub>, an interesting member of this family, possesses energetic properties that require detailed investigation. To establish the governing principles and quantify the observed behaviors, a detailed computational investigation is conducted into the electronic, vibrational, structural, and optical characteristics of K<sub>4</sub>Xe<sub>3</sub>O<sub>12</sub>, utilizing Density Functional Theory (DFT) calculations. The calculated elastic constants adhere to Born's criteria, affirming the mechanical stability of trigonal K<sub>4</sub>Xe<sub>3</sub>O<sub>12</sub>, with a bulk modulus (B<sub>o</sub>) of ≈53.93 GPa. This low compressibility is intricately tied to its robust perovskite structure, featuring XeO<sub>6</sub> octahedra sandwiched between XeO<sub>3</sub> molecules. Precise determination of the valence-conduction bandgap is crucial for understanding potential connections to the photodecomposition phenomenon. Using the Tran-Blaha-modified Becke-Johnson (TB-mB) potential alongside traditional generalized gradient approximation (GGA) approach, a bandgap of ≈1.32 eV is determined. Rapid fluctuations in optical properties also suggest a propensity for photodecomposition in the visible spectrum. The study provides critical insights into perovskite materials, especially those containing noble gas atoms, unveiling unique chemical and physical properties that open up new avenues for versatile applications across various fields.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202400545\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400545","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

透辉石结构是自然界中最迷人的构型之一,其物理和化学特性深受阳离子的性质和氧化态、化学计量和晶体结构的影响。层状过氧化物材料 K4Xe3O12 是这个家族中一个有趣的成员,它具有需要详细研究的高能特性。为了确定支配原理并量化观察到的行为,我们利用密度泛函理论(DFT)计算对 K4Xe3O12 的电子、振动、结构和光学特性进行了详细的计算研究。计算得出的弹性常数符合玻恩标准,肯定了三方 K4Xe3O12 的机械稳定性,其体积模量(Bo)≈53.93 GPa。这种低可压缩性与其坚固的透辉石结构密不可分,该结构的特点是 XeO6 八面体夹在 XeO3 分子之间。精确测定价导带隙对于了解光分解现象的潜在联系至关重要。利用 Tran-Blaha 修正贝克-约翰逊(TB-mB)电势和传统的广义梯度近似(GGA)方法,确定带隙为≈1.32 eV。光学特性的快速波动还表明,在可见光谱中存在光分解倾向。这项研究为包晶材料,尤其是含有惰性气体原子的包晶材料提供了重要的见解,揭示了其独特的化学和物理特性,为各个领域的多功能应用开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Beyond Traditional Perovskites: Xenon's Influence on the Vibrational and Electronic Properties of K4Xe3O12

Beyond Traditional Perovskites: Xenon's Influence on the Vibrational and Electronic Properties of K4Xe3O12
The perovskite structure is one of the most fascinating configurations existing in nature, with its physical and chemical properties heavily influenced by the nature and oxidation states of cations, stoichiometry, and crystalline structure. Layered perovskite material K4Xe3O12, an interesting member of this family, possesses energetic properties that require detailed investigation. To establish the governing principles and quantify the observed behaviors, a detailed computational investigation is conducted into the electronic, vibrational, structural, and optical characteristics of K4Xe3O12, utilizing Density Functional Theory (DFT) calculations. The calculated elastic constants adhere to Born's criteria, affirming the mechanical stability of trigonal K4Xe3O12, with a bulk modulus (Bo) of ≈53.93 GPa. This low compressibility is intricately tied to its robust perovskite structure, featuring XeO6 octahedra sandwiched between XeO3 molecules. Precise determination of the valence-conduction bandgap is crucial for understanding potential connections to the photodecomposition phenomenon. Using the Tran-Blaha-modified Becke-Johnson (TB-mB) potential alongside traditional generalized gradient approximation (GGA) approach, a bandgap of ≈1.32 eV is determined. Rapid fluctuations in optical properties also suggest a propensity for photodecomposition in the visible spectrum. The study provides critical insights into perovskite materials, especially those containing noble gas atoms, unveiling unique chemical and physical properties that open up new avenues for versatile applications across various fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信