{"title":"体现三唑取代三苯胺的多重刺激响应特性。","authors":"Dilip Pandey, Trivedi Samarth, Laxman Sarjerao Kharabe, Anrudh Mishra, Anupam Mishra, Abhinav Raghuvanshi","doi":"10.1002/bio.4876","DOIUrl":null,"url":null,"abstract":"<p>The development of multi-stimuli-responsive (MSR) materials is a tempting yet intriguing challenge due to the absence of a defined design approach. In this study, we designed and synthesised two compounds based on triphenylamine, namely, <b>TPA-Tz1</b> and <b>TPA-Tz2</b>. The photoluminescent investigations reveal the MSR behaviour of both compounds. <b>TPA-Tz1</b> shows reversible mechanochromism with a blue-shifted emission due to changes in intermolecular interactions. Furthermore, both compounds exhibit solvatochromism in solvents of varying polarity. Detailed studies suggest that solvatochromism in <b>TPA-Tz1</b> can be attributed to twisted intramolecular charge transfer (TICT), while in <b>TPA-Tz2</b>, it is due to intramolecular charge transfer (ICT). Additionally, both compounds display acidochromic properties in solution as well as in the solid state due to the protonation of the triazole ring. All changes in emissions are corroborated through theoretical calculations. The results provide insights into the intricate interplay of molecular interactions and structural rearrangements that contribute to the compound's multifaceted responsiveness.</p>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"39 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifesting the multi-stimuli-responsive behaviour of triazole-substituted triphenylamine\",\"authors\":\"Dilip Pandey, Trivedi Samarth, Laxman Sarjerao Kharabe, Anrudh Mishra, Anupam Mishra, Abhinav Raghuvanshi\",\"doi\":\"10.1002/bio.4876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of multi-stimuli-responsive (MSR) materials is a tempting yet intriguing challenge due to the absence of a defined design approach. In this study, we designed and synthesised two compounds based on triphenylamine, namely, <b>TPA-Tz1</b> and <b>TPA-Tz2</b>. The photoluminescent investigations reveal the MSR behaviour of both compounds. <b>TPA-Tz1</b> shows reversible mechanochromism with a blue-shifted emission due to changes in intermolecular interactions. Furthermore, both compounds exhibit solvatochromism in solvents of varying polarity. Detailed studies suggest that solvatochromism in <b>TPA-Tz1</b> can be attributed to twisted intramolecular charge transfer (TICT), while in <b>TPA-Tz2</b>, it is due to intramolecular charge transfer (ICT). Additionally, both compounds display acidochromic properties in solution as well as in the solid state due to the protonation of the triazole ring. All changes in emissions are corroborated through theoretical calculations. The results provide insights into the intricate interplay of molecular interactions and structural rearrangements that contribute to the compound's multifaceted responsiveness.</p>\",\"PeriodicalId\":49902,\"journal\":{\"name\":\"Luminescence\",\"volume\":\"39 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Luminescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bio.4876\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bio.4876","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Manifesting the multi-stimuli-responsive behaviour of triazole-substituted triphenylamine
The development of multi-stimuli-responsive (MSR) materials is a tempting yet intriguing challenge due to the absence of a defined design approach. In this study, we designed and synthesised two compounds based on triphenylamine, namely, TPA-Tz1 and TPA-Tz2. The photoluminescent investigations reveal the MSR behaviour of both compounds. TPA-Tz1 shows reversible mechanochromism with a blue-shifted emission due to changes in intermolecular interactions. Furthermore, both compounds exhibit solvatochromism in solvents of varying polarity. Detailed studies suggest that solvatochromism in TPA-Tz1 can be attributed to twisted intramolecular charge transfer (TICT), while in TPA-Tz2, it is due to intramolecular charge transfer (ICT). Additionally, both compounds display acidochromic properties in solution as well as in the solid state due to the protonation of the triazole ring. All changes in emissions are corroborated through theoretical calculations. The results provide insights into the intricate interplay of molecular interactions and structural rearrangements that contribute to the compound's multifaceted responsiveness.
期刊介绍:
Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry.
Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.