重金属沿食物链的转移:重金属胁迫下昆虫天敌的害虫控制性能综述。

Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-22 DOI:10.1016/j.jhazmat.2024.135587
Zhe Zhang, Hongfei Wu, Aoying Zhang, Mingtao Tan, Shanchun Yan, Dun Jiang
{"title":"重金属沿食物链的转移:重金属胁迫下昆虫天敌的害虫控制性能综述。","authors":"Zhe Zhang, Hongfei Wu, Aoying Zhang, Mingtao Tan, Shanchun Yan, Dun Jiang","doi":"10.1016/j.jhazmat.2024.135587","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal contamination represents a critical global environmental concern. The movement of heavy metals through the food chain inevitably subjects insect natural enemies to heavy metal stress, leading to various adverse effects. This review assesses the risks posed by heavy metal exposure to insect natural enemies, evaluates how such exposure impacts their pest control efficacy, and investigates the mechanisms affecting their fitness. Heavy metals transfer and accumulate from soil to plants, then to herbivorous insects, and ultimately to their natural enemies, impeding growth, development, and reproduction of insect natural enemies. Typically, diminished growth and reproduction directly compromise the pest control efficacy of these natural enemies. Nonetheless, within tolerable limits, increased feeding may occur as these natural enemies strive to meet the energy demands for detoxification, potentially enhancing their pest control capabilities. The production of reactive oxygen species and oxidative damage caused by heavy metals in insect natural enemies, combined with disrupted energy metabolism in host insects, are key factors contributing to the reduced fitness of insect natural enemies. In summary, heavy metal pollution emerges as a significant abiotic factor adversely impacting the pest control performance of these beneficial insects.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135587"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer of heavy metals along the food chain: A review on the pest control performance of insect natural enemies under heavy metal stress.\",\"authors\":\"Zhe Zhang, Hongfei Wu, Aoying Zhang, Mingtao Tan, Shanchun Yan, Dun Jiang\",\"doi\":\"10.1016/j.jhazmat.2024.135587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heavy metal contamination represents a critical global environmental concern. The movement of heavy metals through the food chain inevitably subjects insect natural enemies to heavy metal stress, leading to various adverse effects. This review assesses the risks posed by heavy metal exposure to insect natural enemies, evaluates how such exposure impacts their pest control efficacy, and investigates the mechanisms affecting their fitness. Heavy metals transfer and accumulate from soil to plants, then to herbivorous insects, and ultimately to their natural enemies, impeding growth, development, and reproduction of insect natural enemies. Typically, diminished growth and reproduction directly compromise the pest control efficacy of these natural enemies. Nonetheless, within tolerable limits, increased feeding may occur as these natural enemies strive to meet the energy demands for detoxification, potentially enhancing their pest control capabilities. The production of reactive oxygen species and oxidative damage caused by heavy metals in insect natural enemies, combined with disrupted energy metabolism in host insects, are key factors contributing to the reduced fitness of insect natural enemies. In summary, heavy metal pollution emerges as a significant abiotic factor adversely impacting the pest control performance of these beneficial insects.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":\"478 \",\"pages\":\"135587\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.135587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重金属污染是一个严重的全球环境问题。重金属在食物链中的移动不可避免地会使昆虫天敌受到重金属胁迫,从而导致各种不利影响。本综述评估了昆虫天敌暴露于重金属所带来的风险,评价了这种暴露如何影响它们的害虫控制功效,并研究了影响其适应性的机制。重金属从土壤转移和积累到植物,然后转移到食草昆虫,最终转移到天敌,阻碍昆虫天敌的生长、发育和繁殖。通常情况下,生长和繁殖能力的下降会直接影响这些天敌的害虫控制效果。不过,在可容忍的范围内,这些天敌可能会增加摄食量,以满足解毒的能量需求,从而增强其害虫控制能力。昆虫天敌体内重金属产生的活性氧和氧化损伤,加上寄主昆虫体内能量代谢紊乱,是导致昆虫天敌体能下降的关键因素。总之,重金属污染是影响这些益虫害虫控制性能的一个重要非生物因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer of heavy metals along the food chain: A review on the pest control performance of insect natural enemies under heavy metal stress.

Heavy metal contamination represents a critical global environmental concern. The movement of heavy metals through the food chain inevitably subjects insect natural enemies to heavy metal stress, leading to various adverse effects. This review assesses the risks posed by heavy metal exposure to insect natural enemies, evaluates how such exposure impacts their pest control efficacy, and investigates the mechanisms affecting their fitness. Heavy metals transfer and accumulate from soil to plants, then to herbivorous insects, and ultimately to their natural enemies, impeding growth, development, and reproduction of insect natural enemies. Typically, diminished growth and reproduction directly compromise the pest control efficacy of these natural enemies. Nonetheless, within tolerable limits, increased feeding may occur as these natural enemies strive to meet the energy demands for detoxification, potentially enhancing their pest control capabilities. The production of reactive oxygen species and oxidative damage caused by heavy metals in insect natural enemies, combined with disrupted energy metabolism in host insects, are key factors contributing to the reduced fitness of insect natural enemies. In summary, heavy metal pollution emerges as a significant abiotic factor adversely impacting the pest control performance of these beneficial insects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信