单元空间框架复数的同调性质

IF 1 2区 数学 Q1 MATHEMATICS
Kevin I. Piterman, Volkmar Welker
{"title":"单元空间框架复数的同调性质","authors":"Kevin I. Piterman,&nbsp;Volkmar Welker","doi":"10.1112/jlms.12978","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> be a finite-dimensional vector space equipped with a nondegenerate Hermitian form over a field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>${\\mathbb {K}}$</annotation>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {G}}(V)$</annotation>\n </semantics></math> be the graph with vertex set the one-dimensional nondegenerate subspaces of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> and adjacency relation given by orthogonality. We give a complete description of when <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {G}}(V)$</annotation>\n </semantics></math> is connected in terms of the dimension of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> and the size of the ground field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>${\\mathbb {K}}$</annotation>\n </semantics></math>. Furthermore, we prove that if <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n <mo>&gt;</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$\\dim (V) &amp;gt; 4$</annotation>\n </semantics></math>, then the clique complex <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {F}}(V)$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {G}}(V)$</annotation>\n </semantics></math> is simply connected. For finite fields <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>${\\mathbb {K}}$</annotation>\n </semantics></math>, we also compute the eigenvalues of the adjacency matrix of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {G}}(V)$</annotation>\n </semantics></math>. Then, by Garland's method, we conclude that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>H</mi>\n <mo>∼</mo>\n </mover>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <mo>;</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\tilde{H}_m({\\mathcal {F}}(V);{\\mathbb {k}}) = 0$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>⩽</mo>\n <mi>m</mi>\n <mo>⩽</mo>\n <mo>dim</mo>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$0\\leqslant m\\leqslant \\dim (V)-3$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>${\\mathbb {k}}$</annotation>\n </semantics></math> is a field of characteristic 0, provided that <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo>⩽</mo>\n <mrow>\n <mo>|</mo>\n <mi>K</mi>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$\\dim (V)^2 \\leqslant |{\\mathbb {K}}|$</annotation>\n </semantics></math>. Under these assumptions, we deduce that the barycentric subdivision of <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {F}}(V)$</annotation>\n </semantics></math> deformation retracts to the order complex of the certain rank selection of <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {F}}(V)$</annotation>\n </semantics></math> that is Cohen–Macaulay over <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>${\\mathbb {k}}$</annotation>\n </semantics></math>. Finally, we apply our results to the Quillen poset of elementary abelian <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-subgroups of a finite group and to the study of geometric properties of the poset of nondegenerate subspaces of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> and the poset of orthogonal decompositions of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopy properties of the complex of frames of a unitary space\",\"authors\":\"Kevin I. Piterman,&nbsp;Volkmar Welker\",\"doi\":\"10.1112/jlms.12978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>V</mi>\\n <annotation>$V$</annotation>\\n </semantics></math> be a finite-dimensional vector space equipped with a nondegenerate Hermitian form over a field <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>${\\\\mathbb {K}}$</annotation>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathcal {G}}(V)$</annotation>\\n </semantics></math> be the graph with vertex set the one-dimensional nondegenerate subspaces of <span></span><math>\\n <semantics>\\n <mi>V</mi>\\n <annotation>$V$</annotation>\\n </semantics></math> and adjacency relation given by orthogonality. We give a complete description of when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathcal {G}}(V)$</annotation>\\n </semantics></math> is connected in terms of the dimension of <span></span><math>\\n <semantics>\\n <mi>V</mi>\\n <annotation>$V$</annotation>\\n </semantics></math> and the size of the ground field <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>${\\\\mathbb {K}}$</annotation>\\n </semantics></math>. Furthermore, we prove that if <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n <mo>&gt;</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$\\\\dim (V) &amp;gt; 4$</annotation>\\n </semantics></math>, then the clique complex <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathcal {F}}(V)$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathcal {G}}(V)$</annotation>\\n </semantics></math> is simply connected. For finite fields <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>${\\\\mathbb {K}}$</annotation>\\n </semantics></math>, we also compute the eigenvalues of the adjacency matrix of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathcal {G}}(V)$</annotation>\\n </semantics></math>. Then, by Garland's method, we conclude that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mover>\\n <mi>H</mi>\\n <mo>∼</mo>\\n </mover>\\n <mi>m</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>;</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\tilde{H}_m({\\\\mathcal {F}}(V);{\\\\mathbb {k}}) = 0$</annotation>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo>⩽</mo>\\n <mi>m</mi>\\n <mo>⩽</mo>\\n <mo>dim</mo>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$0\\\\leqslant m\\\\leqslant \\\\dim (V)-3$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>${\\\\mathbb {k}}$</annotation>\\n </semantics></math> is a field of characteristic 0, provided that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n <mn>2</mn>\\n </msup>\\n <mo>⩽</mo>\\n <mrow>\\n <mo>|</mo>\\n <mi>K</mi>\\n <mo>|</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\dim (V)^2 \\\\leqslant |{\\\\mathbb {K}}|$</annotation>\\n </semantics></math>. Under these assumptions, we deduce that the barycentric subdivision of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathcal {F}}(V)$</annotation>\\n </semantics></math> deformation retracts to the order complex of the certain rank selection of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathcal {F}}(V)$</annotation>\\n </semantics></math> that is Cohen–Macaulay over <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>${\\\\mathbb {k}}$</annotation>\\n </semantics></math>. Finally, we apply our results to the Quillen poset of elementary abelian <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-subgroups of a finite group and to the study of geometric properties of the poset of nondegenerate subspaces of <span></span><math>\\n <semantics>\\n <mi>V</mi>\\n <annotation>$V$</annotation>\\n </semantics></math> and the poset of orthogonal decompositions of <span></span><math>\\n <semantics>\\n <mi>V</mi>\\n <annotation>$V$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12978\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12978","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 V $V$ 是一个有限维向量空间,其上有一个域 K ${mathbb {K}}$ 的非enerate 赫米提形式。让 G ( V ) ${mathcal {G}}(V)$ 是顶点集为 V $V$ 的一维非enerate 子空间且邻接关系由正交性给出的图。我们用 V $V$ 的维数和基场 K ${mathbb {K}}$ 的大小给出了 G ( V ) ${mathcal {G}}(V)$ 连接时的完整描述。此外,我们证明如果 dim ( V ) > 4 $\dim (V) &gt; 4$ ,那么 G ( V ) ${\mathcal {F}}(V)$ 的簇复数 F ( V ) ${\mathcal {G}}(V)$ 是简单相连的。对于有限域 K ${{mathbb {K}}$ ,我们也计算 G ( V ) ${\mathcal {G}}(V)$ 的邻接矩阵的特征值。然后,根据加兰方法,我们得出 H ∼ m ( F ( V ) ; k ) = 0 $\tilde{H}_m({\mathcal {F}}(V);{mathbb {k}}) = 0$ for all 0 ⩽ m ⩽ dim ( V ) - 3 $0\leqslant m\leqslant \dim (V)-3$, where k $\{mathbb {k}}$ is a field of characteristic 0、条件是 dim ( V ) 2 ⩽ | K | $\dim (V)^2 \leqslant |{\mathbb {K}}|$ 。在这些假设下,我们推导出 F ( V ) ${mathcal {F}}(V)$ 的重心细分形变回缩到 F ( V ) ${mathcal {F}}(V)$ 的一定秩选择的阶复数,该阶复数是在 k ${mathbb {k}} 上的 Cohen-Macaulay 。最后,我们将结果应用于有限群的基本无性 p $p$ 子群的奎伦正集,以及 V $V$ 的非enerate 子空间正集和 V $V$ 的正交分解正集的几何性质研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy properties of the complex of frames of a unitary space

Let V $V$ be a finite-dimensional vector space equipped with a nondegenerate Hermitian form over a field K ${\mathbb {K}}$ . Let G ( V ) ${\mathcal {G}}(V)$ be the graph with vertex set the one-dimensional nondegenerate subspaces of V $V$ and adjacency relation given by orthogonality. We give a complete description of when G ( V ) ${\mathcal {G}}(V)$ is connected in terms of the dimension of V $V$ and the size of the ground field K ${\mathbb {K}}$ . Furthermore, we prove that if dim ( V ) > 4 $\dim (V) &gt; 4$ , then the clique complex F ( V ) ${\mathcal {F}}(V)$ of G ( V ) ${\mathcal {G}}(V)$ is simply connected. For finite fields K ${\mathbb {K}}$ , we also compute the eigenvalues of the adjacency matrix of G ( V ) ${\mathcal {G}}(V)$ . Then, by Garland's method, we conclude that H m ( F ( V ) ; k ) = 0 $\tilde{H}_m({\mathcal {F}}(V);{\mathbb {k}}) = 0$ for all 0 m dim ( V ) 3 $0\leqslant m\leqslant \dim (V)-3$ , where k ${\mathbb {k}}$ is a field of characteristic 0, provided that dim ( V ) 2 | K | $\dim (V)^2 \leqslant |{\mathbb {K}}|$ . Under these assumptions, we deduce that the barycentric subdivision of F ( V ) ${\mathcal {F}}(V)$ deformation retracts to the order complex of the certain rank selection of F ( V ) ${\mathcal {F}}(V)$ that is Cohen–Macaulay over k ${\mathbb {k}}$ . Finally, we apply our results to the Quillen poset of elementary abelian p $p$ -subgroups of a finite group and to the study of geometric properties of the poset of nondegenerate subspaces of V $V$ and the poset of orthogonal decompositions of V $V$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信