具有给定切分数的二方图中的匹配关系

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jinfeng Liu, Fei Huang
{"title":"具有给定切分数的二方图中的匹配关系","authors":"Jinfeng Liu,&nbsp;Fei Huang","doi":"10.1016/j.dam.2024.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>A matching in a graph is a set of pairwise nonadjacent edges. Denote by <span><math><mrow><mi>m</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> the number of matchings of cardinality <span><math><mi>k</mi></math></span> in a graph <span><math><mi>G</mi></math></span>. A quasi-order <span><math><mo>⪯</mo></math></span> is defined by <span><math><mrow><mi>G</mi><mo>⪯</mo><mi>H</mi></mrow></math></span> whenever <span><math><mrow><mi>m</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>≤</mo><mi>m</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> holds for all <span><math><mi>k</mi></math></span>. Let <span><math><mrow><msub><mrow><mi>BG</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> be the set of connected bipartite graphs with <span><math><mi>n</mi></math></span> vertices and <span><math><mi>γ</mi></math></span> cut vertices, and <span><math><mrow><msub><mrow><mi>BG</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> be the set of connected bipartite graphs with <span><math><mi>n</mi></math></span> vertices and <span><math><mi>γ</mi></math></span> cut edges. We determine the greatest and least elements with respect to this quasi-order in <span><math><mrow><msub><mrow><mi>BG</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> and the greatest element in <span><math><mrow><msub><mrow><mi>BG</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> for all values of <span><math><mi>n</mi></math></span> and <span><math><mi>γ</mi></math></span>. As corollaries, we find that these graphs maximize (resp. minimize) the Hosoya index and the matching energy within the respective sets.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"359 ","pages":"Pages 303-309"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matchings in bipartite graphs with a given number of cuts\",\"authors\":\"Jinfeng Liu,&nbsp;Fei Huang\",\"doi\":\"10.1016/j.dam.2024.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A matching in a graph is a set of pairwise nonadjacent edges. Denote by <span><math><mrow><mi>m</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> the number of matchings of cardinality <span><math><mi>k</mi></math></span> in a graph <span><math><mi>G</mi></math></span>. A quasi-order <span><math><mo>⪯</mo></math></span> is defined by <span><math><mrow><mi>G</mi><mo>⪯</mo><mi>H</mi></mrow></math></span> whenever <span><math><mrow><mi>m</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>≤</mo><mi>m</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> holds for all <span><math><mi>k</mi></math></span>. Let <span><math><mrow><msub><mrow><mi>BG</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> be the set of connected bipartite graphs with <span><math><mi>n</mi></math></span> vertices and <span><math><mi>γ</mi></math></span> cut vertices, and <span><math><mrow><msub><mrow><mi>BG</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> be the set of connected bipartite graphs with <span><math><mi>n</mi></math></span> vertices and <span><math><mi>γ</mi></math></span> cut edges. We determine the greatest and least elements with respect to this quasi-order in <span><math><mrow><msub><mrow><mi>BG</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> and the greatest element in <span><math><mrow><msub><mrow><mi>BG</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>γ</mi><mo>)</mo></mrow></mrow></math></span> for all values of <span><math><mi>n</mi></math></span> and <span><math><mi>γ</mi></math></span>. As corollaries, we find that these graphs maximize (resp. minimize) the Hosoya index and the matching energy within the respective sets.</p></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"359 \",\"pages\":\"Pages 303-309\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003640\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003640","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图中的匹配是指成对不相邻边的集合。当 m(G,k)≤m(H,k)对所有 k 都成立时,准序⪯的定义是 G⪯H。让 BG1(n,γ)是具有 n 个顶点和 γ 个切顶的连通双方图的集合,BG2(n,γ)是具有 n 个顶点和 γ 条切边的连通双方图的集合。我们确定了在所有 n 和 γ 值下,BG1(n,γ) 中与此准序相关的最大元素和最小元素,以及 BG2(n,γ) 中的最大元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matchings in bipartite graphs with a given number of cuts

A matching in a graph is a set of pairwise nonadjacent edges. Denote by m(G,k) the number of matchings of cardinality k in a graph G. A quasi-order is defined by GH whenever m(G,k)m(H,k) holds for all k. Let BG1(n,γ) be the set of connected bipartite graphs with n vertices and γ cut vertices, and BG2(n,γ) be the set of connected bipartite graphs with n vertices and γ cut edges. We determine the greatest and least elements with respect to this quasi-order in BG1(n,γ) and the greatest element in BG2(n,γ) for all values of n and γ. As corollaries, we find that these graphs maximize (resp. minimize) the Hosoya index and the matching energy within the respective sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信