量子约束效应和电子-声子相互作用对某些 II-VI 半导体带隙收缩的作用

IF 2.1 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Akansha Thakur, Niladri Sarkar
{"title":"量子约束效应和电子-声子相互作用对某些 II-VI 半导体带隙收缩的作用","authors":"Akansha Thakur,&nbsp;Niladri Sarkar","doi":"10.1016/j.ssc.2024.115657","DOIUrl":null,"url":null,"abstract":"<div><p>The role of electron-phonon interaction in band gap shrinkage for some II-VI bulk and low-dimensional semiconductors is investigated in this work. The variation of the energy band gap is studied as a function of temperature using Varshni's, Vina's, and Passler's relations. It is observed that the change in the energy band gap is affected due to the quantum confinement as the dimensionality of these semiconductors is decreased.</p></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"392 ","pages":"Article 115657"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of quantum confinement and the role of electron-phonon interaction on the band gap shrinkage of some II-VI semiconductors\",\"authors\":\"Akansha Thakur,&nbsp;Niladri Sarkar\",\"doi\":\"10.1016/j.ssc.2024.115657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The role of electron-phonon interaction in band gap shrinkage for some II-VI bulk and low-dimensional semiconductors is investigated in this work. The variation of the energy band gap is studied as a function of temperature using Varshni's, Vina's, and Passler's relations. It is observed that the change in the energy band gap is affected due to the quantum confinement as the dimensionality of these semiconductors is decreased.</p></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"392 \",\"pages\":\"Article 115657\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109824002345\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824002345","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了电子-声子相互作用在某些 II-VI 体半导体和低维半导体能带隙收缩中的作用。利用 Varshni、Vina 和 Passler 关系研究了能带隙随温度的变化。研究发现,当这些半导体的维数降低时,能带隙的变化会受到量子束缚的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of quantum confinement and the role of electron-phonon interaction on the band gap shrinkage of some II-VI semiconductors

The role of electron-phonon interaction in band gap shrinkage for some II-VI bulk and low-dimensional semiconductors is investigated in this work. The variation of the energy band gap is studied as a function of temperature using Varshni's, Vina's, and Passler's relations. It is observed that the change in the energy band gap is affected due to the quantum confinement as the dimensionality of these semiconductors is decreased.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Communications
Solid State Communications 物理-物理:凝聚态物理
CiteScore
3.40
自引率
4.80%
发文量
287
审稿时长
51 days
期刊介绍: Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged. A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions. The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信