温带海王星下大气化学图谱:从大气中的 CO2/CH4 比率推断内部深处的 H2O/H2 比率

Jeehyun Yang and Renyu Hu
{"title":"温带海王星下大气化学图谱:从大气中的 CO2/CH4 比率推断内部深处的 H2O/H2 比率","authors":"Jeehyun Yang and Renyu Hu","doi":"10.3847/2041-8213/ad6b25","DOIUrl":null,"url":null,"abstract":"Understanding the planetary envelope composition of sub-Neptune-type exoplanets is challenging due to the inherent degeneracy in their interior composition scenarios. Particularly, the planetary envelope’s H2O/H2 ratio, which can also be expressed as the O/H ratio, provides crucial insights into its original location relative to the ice line during planetary formation. Using self-consistent radiative transfer modeling and a rate-based automatic chemical network generator combined with 1D photochemical kinetic-transport atmospheric modeling, we investigate various atmospheric scenarios of temperate sub-Neptunes, ranging from H2-dominated to H2O-dominated atmospheres with equilibrium temperatures (Teq) of 250—400 K. This study includes examples such as K2-18 b (Teq = 255 K), LP 791-18 c (Teq = 324 K), and TOI-270 d (Teq = 354 K). Our models indicate that the atmospheric CO2/CH4 ratio can be used to infer the deep interior H2O/H2 ratio. Applying this method to recent JWST observations, our findings suggest that K2-18 b likely has an interior that is 50% highly enriched in water, exceeding the water content in a 100 × Z⊙ scenario and suggesting a planetary formation mechanism involving substantial accretion of ices. In contrast, our model suggests that approximately 25% of TOI-270 d’s interior is composed of H2O, which aligns with the conventional metallicity framework with a metallicity higher than 100 × Z⊙. Furthermore, our models identify carbonyl sulfide (OCS) and sulfur dioxide (SO2) as strong indicators for temperate sub-Neptunes with at least 10% of their interior composed of water. These results provide a method to delineate the internal composition and formation mechanisms of temperate sub-Neptunes (Teq < ∼ 500 K) via atmospheric characterization through transmission spectroscopy.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Mapping of Temperate Sub-Neptune Atmospheres: Constraining the Deep Interior H2O/H2 Ratio from the Atmospheric CO2/CH4 Ratio\",\"authors\":\"Jeehyun Yang and Renyu Hu\",\"doi\":\"10.3847/2041-8213/ad6b25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the planetary envelope composition of sub-Neptune-type exoplanets is challenging due to the inherent degeneracy in their interior composition scenarios. Particularly, the planetary envelope’s H2O/H2 ratio, which can also be expressed as the O/H ratio, provides crucial insights into its original location relative to the ice line during planetary formation. Using self-consistent radiative transfer modeling and a rate-based automatic chemical network generator combined with 1D photochemical kinetic-transport atmospheric modeling, we investigate various atmospheric scenarios of temperate sub-Neptunes, ranging from H2-dominated to H2O-dominated atmospheres with equilibrium temperatures (Teq) of 250—400 K. This study includes examples such as K2-18 b (Teq = 255 K), LP 791-18 c (Teq = 324 K), and TOI-270 d (Teq = 354 K). Our models indicate that the atmospheric CO2/CH4 ratio can be used to infer the deep interior H2O/H2 ratio. Applying this method to recent JWST observations, our findings suggest that K2-18 b likely has an interior that is 50% highly enriched in water, exceeding the water content in a 100 × Z⊙ scenario and suggesting a planetary formation mechanism involving substantial accretion of ices. In contrast, our model suggests that approximately 25% of TOI-270 d’s interior is composed of H2O, which aligns with the conventional metallicity framework with a metallicity higher than 100 × Z⊙. Furthermore, our models identify carbonyl sulfide (OCS) and sulfur dioxide (SO2) as strong indicators for temperate sub-Neptunes with at least 10% of their interior composed of water. These results provide a method to delineate the internal composition and formation mechanisms of temperate sub-Neptunes (Teq < ∼ 500 K) via atmospheric characterization through transmission spectroscopy.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad6b25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad6b25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于亚海王星型系外行星内部组成情况的固有退化性,了解其行星包层组成具有挑战性。特别是行星包膜的 H2O/H2 比率(也可以表示为 O/H 比率),它为了解行星形成过程中行星包膜相对于冰线的原始位置提供了至关重要的信息。利用自洽辐射传递模型和基于速率的自动化学网络生成器,结合一维光化学动力学-传输大气模型,我们研究了温带次海王星的各种大气情景,从H2为主到H2O为主的大气,平衡温度(Teq)为250-400 K。我们的模型表明,大气中的 CO2/CH4 比率可以用来推断内部深处的 H2O/H2 比率。将这种方法应用到最近的 JWST 观测中,我们的研究结果表明 K2-18 b 内部的水含量可能高达 50%,超过了 100 × Z⊙ 情景下的水含量,这表明行星的形成机制涉及大量的冰增生。相比之下,我们的模型表明,TOI-270 d内部大约25%由H2O组成,这与金属度高于100×Z⊙的传统金属度框架相一致。此外,我们的模型还发现,羰基硫化物(OCS)和二氧化硫(SO2)是温带亚海王星的有力指标,其内部至少有10%由水组成。这些结果提供了一种方法,通过透射光谱分析大气特征,来划分温带亚海王星(Teq < ∼ 500 K)的内部组成和形成机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical Mapping of Temperate Sub-Neptune Atmospheres: Constraining the Deep Interior H2O/H2 Ratio from the Atmospheric CO2/CH4 Ratio
Understanding the planetary envelope composition of sub-Neptune-type exoplanets is challenging due to the inherent degeneracy in their interior composition scenarios. Particularly, the planetary envelope’s H2O/H2 ratio, which can also be expressed as the O/H ratio, provides crucial insights into its original location relative to the ice line during planetary formation. Using self-consistent radiative transfer modeling and a rate-based automatic chemical network generator combined with 1D photochemical kinetic-transport atmospheric modeling, we investigate various atmospheric scenarios of temperate sub-Neptunes, ranging from H2-dominated to H2O-dominated atmospheres with equilibrium temperatures (Teq) of 250—400 K. This study includes examples such as K2-18 b (Teq = 255 K), LP 791-18 c (Teq = 324 K), and TOI-270 d (Teq = 354 K). Our models indicate that the atmospheric CO2/CH4 ratio can be used to infer the deep interior H2O/H2 ratio. Applying this method to recent JWST observations, our findings suggest that K2-18 b likely has an interior that is 50% highly enriched in water, exceeding the water content in a 100 × Z⊙ scenario and suggesting a planetary formation mechanism involving substantial accretion of ices. In contrast, our model suggests that approximately 25% of TOI-270 d’s interior is composed of H2O, which aligns with the conventional metallicity framework with a metallicity higher than 100 × Z⊙. Furthermore, our models identify carbonyl sulfide (OCS) and sulfur dioxide (SO2) as strong indicators for temperate sub-Neptunes with at least 10% of their interior composed of water. These results provide a method to delineate the internal composition and formation mechanisms of temperate sub-Neptunes (Teq < ∼ 500 K) via atmospheric characterization through transmission spectroscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信