外源褪黑激素通过基因调控缓解氯化钠胁迫并促进忍冬幼苗的无性生长

IF 4.3 2区 生物学 Q1 PLANT SCIENCES
Cheng Song, Muhammad Aamir Manzoor, Yanshuang Ren, Jingjing Guo, Pengfei Zhang, Yingyu Zhang
{"title":"外源褪黑激素通过基因调控缓解氯化钠胁迫并促进忍冬幼苗的无性生长","authors":"Cheng Song, Muhammad Aamir Manzoor, Yanshuang Ren, Jingjing Guo, Pengfei Zhang, Yingyu Zhang","doi":"10.1186/s12870-024-05506-6","DOIUrl":null,"url":null,"abstract":"<p><p>Melatonin (Mt) functions as a growth regulator and multifunctional signaling molecule in plants, thereby playing a crucial role in promoting growth and orchestrating protective responses to various abiotic stresses. However, the mechanism whereby exogenous Mt protects Lonicera japonica Thunb. (L. japonica) against salt stress has not been fully elucidated. Therefore, this study aimed to elucidate how exogenous Mt alleviates sodium chloride (NaCl) stress in L. japonica seedlings. Salt-sensitive L. japonica seedlings were treated with an aqueous solution containing 150 mM of NaCl and aqueous solutions containing various concentrations of Mt. The results revealed that treatment of NaCl-stressed L. japonica seedlings with a 60 µM aqueous solution of Mt significantly enhanced vegetative plant growth by scavenging reactive oxygen species and thus reducing oxidative stress. The latter was evidenced by decreases in electrical conductivity and malondialdehyde (MDA) concentrations. Moreover, Mt treatment led to increases in the NaCl-stressed L. japonica seedlings' total chlorophyll content, soluble sugar content, and flavonoid content, demonstrating that Mt treatment improved the seedlings' tolerance of NaCl stress. This was also indicated by the NaCl-stressed L. japonica seedlings exhibiting marked increases in the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) and in photosynthetic functions. Furthermore, Mt treatment of NaCl-stressed L. japonica seedlings increased their expression of phenylalanine ammonia-lyase 1 (PAL1), phenylalanine ammonia-lyase 2 (PAL2), calcium-dependent protein kinase (CPK), cinnamyl alcohol dehydrogenase (CAD), flavanol synthase (FLS), and chalcone synthase (CHS). In conclusion, our results demonstrate that treatment of L. japonica seedlings with a 60 µM aqueous solution of Mt significantly ameliorated the detrimental effects of NaCl stress in the seedlings. Therefore, such treatment has substantial potential for use in safeguarding medicinal plant crops against severe salinity.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337751/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exogenous melatonin alleviates sodium chloride stress and increases vegetative growth in Lonicera japonica seedlings via gene regulation.\",\"authors\":\"Cheng Song, Muhammad Aamir Manzoor, Yanshuang Ren, Jingjing Guo, Pengfei Zhang, Yingyu Zhang\",\"doi\":\"10.1186/s12870-024-05506-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Melatonin (Mt) functions as a growth regulator and multifunctional signaling molecule in plants, thereby playing a crucial role in promoting growth and orchestrating protective responses to various abiotic stresses. However, the mechanism whereby exogenous Mt protects Lonicera japonica Thunb. (L. japonica) against salt stress has not been fully elucidated. Therefore, this study aimed to elucidate how exogenous Mt alleviates sodium chloride (NaCl) stress in L. japonica seedlings. Salt-sensitive L. japonica seedlings were treated with an aqueous solution containing 150 mM of NaCl and aqueous solutions containing various concentrations of Mt. The results revealed that treatment of NaCl-stressed L. japonica seedlings with a 60 µM aqueous solution of Mt significantly enhanced vegetative plant growth by scavenging reactive oxygen species and thus reducing oxidative stress. The latter was evidenced by decreases in electrical conductivity and malondialdehyde (MDA) concentrations. Moreover, Mt treatment led to increases in the NaCl-stressed L. japonica seedlings' total chlorophyll content, soluble sugar content, and flavonoid content, demonstrating that Mt treatment improved the seedlings' tolerance of NaCl stress. This was also indicated by the NaCl-stressed L. japonica seedlings exhibiting marked increases in the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) and in photosynthetic functions. Furthermore, Mt treatment of NaCl-stressed L. japonica seedlings increased their expression of phenylalanine ammonia-lyase 1 (PAL1), phenylalanine ammonia-lyase 2 (PAL2), calcium-dependent protein kinase (CPK), cinnamyl alcohol dehydrogenase (CAD), flavanol synthase (FLS), and chalcone synthase (CHS). In conclusion, our results demonstrate that treatment of L. japonica seedlings with a 60 µM aqueous solution of Mt significantly ameliorated the detrimental effects of NaCl stress in the seedlings. Therefore, such treatment has substantial potential for use in safeguarding medicinal plant crops against severe salinity.</p>\",\"PeriodicalId\":9198,\"journal\":{\"name\":\"BMC Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337751/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-024-05506-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-024-05506-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

褪黑激素(Melatonin,Mt)是植物体内的一种生长调节剂和多功能信号分子,因此在促进生长和协调对各种非生物胁迫的保护性反应方面发挥着至关重要的作用。然而,外源 Mt 保护忍冬免受盐胁迫的机制尚未完全阐明。因此,本研究旨在阐明外源 Mt 如何缓解忍冬幼苗的氯化钠(NaCl)胁迫。结果表明,用 60 µM 的 Mt 水溶液处理 NaCl 胁迫的粳稻幼苗,可以清除活性氧,从而减轻氧化胁迫,从而显著促进植物的无性生长。后者表现为电导率和丙二醛(MDA)浓度的降低。此外,Mt 处理还提高了 NaCl 胁迫粳稻幼苗的总叶绿素含量、可溶性糖含量和类黄酮含量,表明 Mt 处理提高了幼苗对 NaCl 胁迫的耐受性。此外,NaCl 胁迫的粳稻幼苗的抗氧化酶(超氧化物歧化酶、过氧化物酶、过氧化氢酶和抗坏血酸过氧化物酶)活性和光合功能也明显提高。此外,对 NaCl 胁迫的粳稻幼苗进行 Mt 处理后,其苯丙氨酸氨基转移酶 1(PAL1)、苯丙氨酸氨基转移酶 2(PAL2)、钙依赖性蛋白激酶(CPK)、肉桂醇脱氢酶(CAD)、黄烷醇合成酶(FLS)和查尔酮合成酶(CHS)的表达量均有所增加。总之,我们的研究结果表明,用 60 µM 的 Mt 水溶液处理粳稻幼苗能显著改善 NaCl 胁迫对幼苗的不利影响。因此,这种处理方法在保护药用植物作物免受严重盐渍化影响方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exogenous melatonin alleviates sodium chloride stress and increases vegetative growth in Lonicera japonica seedlings via gene regulation.

Melatonin (Mt) functions as a growth regulator and multifunctional signaling molecule in plants, thereby playing a crucial role in promoting growth and orchestrating protective responses to various abiotic stresses. However, the mechanism whereby exogenous Mt protects Lonicera japonica Thunb. (L. japonica) against salt stress has not been fully elucidated. Therefore, this study aimed to elucidate how exogenous Mt alleviates sodium chloride (NaCl) stress in L. japonica seedlings. Salt-sensitive L. japonica seedlings were treated with an aqueous solution containing 150 mM of NaCl and aqueous solutions containing various concentrations of Mt. The results revealed that treatment of NaCl-stressed L. japonica seedlings with a 60 µM aqueous solution of Mt significantly enhanced vegetative plant growth by scavenging reactive oxygen species and thus reducing oxidative stress. The latter was evidenced by decreases in electrical conductivity and malondialdehyde (MDA) concentrations. Moreover, Mt treatment led to increases in the NaCl-stressed L. japonica seedlings' total chlorophyll content, soluble sugar content, and flavonoid content, demonstrating that Mt treatment improved the seedlings' tolerance of NaCl stress. This was also indicated by the NaCl-stressed L. japonica seedlings exhibiting marked increases in the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) and in photosynthetic functions. Furthermore, Mt treatment of NaCl-stressed L. japonica seedlings increased their expression of phenylalanine ammonia-lyase 1 (PAL1), phenylalanine ammonia-lyase 2 (PAL2), calcium-dependent protein kinase (CPK), cinnamyl alcohol dehydrogenase (CAD), flavanol synthase (FLS), and chalcone synthase (CHS). In conclusion, our results demonstrate that treatment of L. japonica seedlings with a 60 µM aqueous solution of Mt significantly ameliorated the detrimental effects of NaCl stress in the seedlings. Therefore, such treatment has substantial potential for use in safeguarding medicinal plant crops against severe salinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信