Mohammad Saidur Rhaman , Farjana Rauf , Shaila Shermin Tania , Nafiz Bayazid , Md Tahjib-ul-Arif , Arif Hasan Khan Robin , Md Anamul Hoque , Xinghong Yang , Yoshiyuki Murata , Marian Brestic
{"title":"脯氨酸和甘氨酸甜菜碱:通过调节生长、气孔大小和氧化应激反应增强玉米抗盐胁迫能力的动态二重奏","authors":"Mohammad Saidur Rhaman , Farjana Rauf , Shaila Shermin Tania , Nafiz Bayazid , Md Tahjib-ul-Arif , Arif Hasan Khan Robin , Md Anamul Hoque , Xinghong Yang , Yoshiyuki Murata , Marian Brestic","doi":"10.1016/j.stress.2024.100563","DOIUrl":null,"url":null,"abstract":"<div><p>Osmolytes proline (Pro) and glycine betaine (GB) have been reported to impart tolerance against salinity stress in many plants. However, there is no report available on the combined application of Pro and GB to mitigate salinity-induced growth inhibition in maize. Consequently, the goal of the current study is to assess Pro's and GB's potential as priming and exogenous agents in maize under salt stress. Therefore, the present study was conducted using a petri dish and hydroponic pot experiment to evaluate the morpho-physiological and biochemical characteristics of maize plants subjected to salt stress, with the addition of Pro and GB. The seeds of maize were germinated under 20 mM of each Pro or GB, with or without 120 mM salinity stress. The findings demonstrated that salt stress lessened the final germination percentage (FGP) (52.9 %), photosynthetic pigments (40.0 %), relative water content (RWC) (20.2 %), stomatal size (59.3 %), and leaf and root <em>K</em><sup>+</sup>/Na<sup>+</sup> ratios of maize seedlings compared to control. In addition, compared to the control, higher levels of malondialdehyde (MDA) (24.2 %) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) (25.7 %) were observed, whereas lower levels of catalase (CAT) (43.8 %) and peroxidase (POX) (30.4 %) were noted. The priming with Pro, GB, Pro+GB significantly increased FGP, germination index (GI), shoot-root biomass, seed vigor index (SVI), and reduced mean germination time (MGT) under salt stress. Foliar application of Pro, GB, or Pro+GB resulted in a significant increment in chlorophyll contents, RWC, <em>K</em><sup>+</sup> absorption, and stomatal size under salt stress. Furthermore, supplementing with Pro, GB, or Pro+GB reduced the accumulation of H<sub>2</sub>O<sub>2</sub> (24.0, 23.3, and 31.1 %, respectively) and MDA (22.8, 17.2, and 32.1 %, respectively) caused by salt and augmented the levels of CAT (33.3, 22.8, and 45.2 %, respectively) and POX (36.4, 23.5, and 47.2 %, respectively) in the leaves. Taken together, the current study's findings indicate that combining Pro and GB is one of the most effective techniques for improving the salinity-tolerant seed germination and seedling traits of maize plants. Consequently, this study recommends that Pro and GB can be used as seed priming and exogenous agents to help maize grow faster in salt-stress situations.</p></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100563"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667064X24002161/pdfft?md5=722e713f864e3f7f50f4656f6b974a54&pid=1-s2.0-S2667064X24002161-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Proline and glycine betaine: A dynamic duo for enhancing salt stress resilience in maize by regulating growth, Stomatal size, and Oxidative stress responses\",\"authors\":\"Mohammad Saidur Rhaman , Farjana Rauf , Shaila Shermin Tania , Nafiz Bayazid , Md Tahjib-ul-Arif , Arif Hasan Khan Robin , Md Anamul Hoque , Xinghong Yang , Yoshiyuki Murata , Marian Brestic\",\"doi\":\"10.1016/j.stress.2024.100563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Osmolytes proline (Pro) and glycine betaine (GB) have been reported to impart tolerance against salinity stress in many plants. However, there is no report available on the combined application of Pro and GB to mitigate salinity-induced growth inhibition in maize. Consequently, the goal of the current study is to assess Pro's and GB's potential as priming and exogenous agents in maize under salt stress. Therefore, the present study was conducted using a petri dish and hydroponic pot experiment to evaluate the morpho-physiological and biochemical characteristics of maize plants subjected to salt stress, with the addition of Pro and GB. The seeds of maize were germinated under 20 mM of each Pro or GB, with or without 120 mM salinity stress. The findings demonstrated that salt stress lessened the final germination percentage (FGP) (52.9 %), photosynthetic pigments (40.0 %), relative water content (RWC) (20.2 %), stomatal size (59.3 %), and leaf and root <em>K</em><sup>+</sup>/Na<sup>+</sup> ratios of maize seedlings compared to control. In addition, compared to the control, higher levels of malondialdehyde (MDA) (24.2 %) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) (25.7 %) were observed, whereas lower levels of catalase (CAT) (43.8 %) and peroxidase (POX) (30.4 %) were noted. The priming with Pro, GB, Pro+GB significantly increased FGP, germination index (GI), shoot-root biomass, seed vigor index (SVI), and reduced mean germination time (MGT) under salt stress. Foliar application of Pro, GB, or Pro+GB resulted in a significant increment in chlorophyll contents, RWC, <em>K</em><sup>+</sup> absorption, and stomatal size under salt stress. Furthermore, supplementing with Pro, GB, or Pro+GB reduced the accumulation of H<sub>2</sub>O<sub>2</sub> (24.0, 23.3, and 31.1 %, respectively) and MDA (22.8, 17.2, and 32.1 %, respectively) caused by salt and augmented the levels of CAT (33.3, 22.8, and 45.2 %, respectively) and POX (36.4, 23.5, and 47.2 %, respectively) in the leaves. Taken together, the current study's findings indicate that combining Pro and GB is one of the most effective techniques for improving the salinity-tolerant seed germination and seedling traits of maize plants. Consequently, this study recommends that Pro and GB can be used as seed priming and exogenous agents to help maize grow faster in salt-stress situations.</p></div>\",\"PeriodicalId\":34736,\"journal\":{\"name\":\"Plant Stress\",\"volume\":\"14 \",\"pages\":\"Article 100563\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667064X24002161/pdfft?md5=722e713f864e3f7f50f4656f6b974a54&pid=1-s2.0-S2667064X24002161-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667064X24002161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24002161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Proline and glycine betaine: A dynamic duo for enhancing salt stress resilience in maize by regulating growth, Stomatal size, and Oxidative stress responses
Osmolytes proline (Pro) and glycine betaine (GB) have been reported to impart tolerance against salinity stress in many plants. However, there is no report available on the combined application of Pro and GB to mitigate salinity-induced growth inhibition in maize. Consequently, the goal of the current study is to assess Pro's and GB's potential as priming and exogenous agents in maize under salt stress. Therefore, the present study was conducted using a petri dish and hydroponic pot experiment to evaluate the morpho-physiological and biochemical characteristics of maize plants subjected to salt stress, with the addition of Pro and GB. The seeds of maize were germinated under 20 mM of each Pro or GB, with or without 120 mM salinity stress. The findings demonstrated that salt stress lessened the final germination percentage (FGP) (52.9 %), photosynthetic pigments (40.0 %), relative water content (RWC) (20.2 %), stomatal size (59.3 %), and leaf and root K+/Na+ ratios of maize seedlings compared to control. In addition, compared to the control, higher levels of malondialdehyde (MDA) (24.2 %) and hydrogen peroxide (H2O2) (25.7 %) were observed, whereas lower levels of catalase (CAT) (43.8 %) and peroxidase (POX) (30.4 %) were noted. The priming with Pro, GB, Pro+GB significantly increased FGP, germination index (GI), shoot-root biomass, seed vigor index (SVI), and reduced mean germination time (MGT) under salt stress. Foliar application of Pro, GB, or Pro+GB resulted in a significant increment in chlorophyll contents, RWC, K+ absorption, and stomatal size under salt stress. Furthermore, supplementing with Pro, GB, or Pro+GB reduced the accumulation of H2O2 (24.0, 23.3, and 31.1 %, respectively) and MDA (22.8, 17.2, and 32.1 %, respectively) caused by salt and augmented the levels of CAT (33.3, 22.8, and 45.2 %, respectively) and POX (36.4, 23.5, and 47.2 %, respectively) in the leaves. Taken together, the current study's findings indicate that combining Pro and GB is one of the most effective techniques for improving the salinity-tolerant seed germination and seedling traits of maize plants. Consequently, this study recommends that Pro and GB can be used as seed priming and exogenous agents to help maize grow faster in salt-stress situations.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.