极偏心副土星开普勒-1656 b的倾角约束条件

Ryan A. Rubenzahl, Andrew W. Howard, Samuel Halverson, Cristobal Petrovich, Isabel Angelo, Guđmundur Stefánsson, Fei Dai, Aaron Householder, Benjamin Fulton, Steven R. Gibson, Arpita Roy, Abby P. Shaum, Howard Isaacson, Max Brodheim, William Deich, Grant M. Hill, Bradford Holden, Daniel Huber, Russ R. Laher, Kyle Lanclos, Joel N. Payne, Erik A. Petigura, Christian Schwab, Josh Walawender, Sharon X. Wang, Lauren M. Weiss, Joshua N. Winn and Jason T. Wright
{"title":"极偏心副土星开普勒-1656 b的倾角约束条件","authors":"Ryan A. Rubenzahl, Andrew W. Howard, Samuel Halverson, Cristobal Petrovich, Isabel Angelo, Guđmundur Stefánsson, Fei Dai, Aaron Householder, Benjamin Fulton, Steven R. Gibson, Arpita Roy, Abby P. Shaum, Howard Isaacson, Max Brodheim, William Deich, Grant M. Hill, Bradford Holden, Daniel Huber, Russ R. Laher, Kyle Lanclos, Joel N. Payne, Erik A. Petigura, Christian Schwab, Josh Walawender, Sharon X. Wang, Lauren M. Weiss, Joshua N. Winn and Jason T. Wright","doi":"10.3847/2041-8213/ad6985","DOIUrl":null,"url":null,"abstract":"The orbits of close-in exoplanets provide clues to their formation and evolutionary history. Many close-in exoplanets likely formed far out in their protoplanetary disks and migrated to their current orbits, perhaps via high-eccentricity migration (HEM), a process that can also excite obliquities. A handful of known exoplanets are perhaps caught in the act of HEM, as they are observed on highly eccentric orbits with tidal circularization timescales shorter than their ages. One such exoplanet is Kepler-1656 b, which is also the only known nongiant exoplanet (<100 M⊕) with an extreme eccentricity (e = 0.84). We measured the sky-projected obliquity of Kepler-1656 b by observing the Rossiter–McLaughlin effect during a transit with the Keck Planet Finder. Our data are consistent with an aligned orbit but are also consistent with moderate misalignment with λ < 50° at 95% confidence, with the most likely solution of deg. A low obliquity would be an unlikely outcome of most eccentricity-exciting scenarios, but we show that the properties of the outer companion in the system are consistent with the coplanar HEM mechanism. Alternatively, if the system is not relatively coplanar (≲20° mutual inclination), Kepler-1656 b may be presently at a rare snapshot of long-lived eccentricity oscillations that do not induce migration. Kepler-1656 b is only the fourth exoplanet with e > 0.8 to have its obliquity constrained; expanding this population will help establish the degree to which orbital misalignment accompanies migration. Future work that constrains the mutual inclinations of outer perturbers will be key for distinguishing plausible mechanisms.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obliquity Constraints for the Extremely Eccentric Sub-Saturn Kepler-1656 b\",\"authors\":\"Ryan A. Rubenzahl, Andrew W. Howard, Samuel Halverson, Cristobal Petrovich, Isabel Angelo, Guđmundur Stefánsson, Fei Dai, Aaron Householder, Benjamin Fulton, Steven R. Gibson, Arpita Roy, Abby P. Shaum, Howard Isaacson, Max Brodheim, William Deich, Grant M. Hill, Bradford Holden, Daniel Huber, Russ R. Laher, Kyle Lanclos, Joel N. Payne, Erik A. Petigura, Christian Schwab, Josh Walawender, Sharon X. Wang, Lauren M. Weiss, Joshua N. Winn and Jason T. Wright\",\"doi\":\"10.3847/2041-8213/ad6985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The orbits of close-in exoplanets provide clues to their formation and evolutionary history. Many close-in exoplanets likely formed far out in their protoplanetary disks and migrated to their current orbits, perhaps via high-eccentricity migration (HEM), a process that can also excite obliquities. A handful of known exoplanets are perhaps caught in the act of HEM, as they are observed on highly eccentric orbits with tidal circularization timescales shorter than their ages. One such exoplanet is Kepler-1656 b, which is also the only known nongiant exoplanet (<100 M⊕) with an extreme eccentricity (e = 0.84). We measured the sky-projected obliquity of Kepler-1656 b by observing the Rossiter–McLaughlin effect during a transit with the Keck Planet Finder. Our data are consistent with an aligned orbit but are also consistent with moderate misalignment with λ < 50° at 95% confidence, with the most likely solution of deg. A low obliquity would be an unlikely outcome of most eccentricity-exciting scenarios, but we show that the properties of the outer companion in the system are consistent with the coplanar HEM mechanism. Alternatively, if the system is not relatively coplanar (≲20° mutual inclination), Kepler-1656 b may be presently at a rare snapshot of long-lived eccentricity oscillations that do not induce migration. Kepler-1656 b is only the fourth exoplanet with e > 0.8 to have its obliquity constrained; expanding this population will help establish the degree to which orbital misalignment accompanies migration. Future work that constrains the mutual inclinations of outer perturbers will be key for distinguishing plausible mechanisms.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad6985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad6985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近地系外行星的轨道为了解它们的形成和演化历史提供了线索。许多近地系外行星很可能是在原行星盘很远的地方形成的,然后迁移到它们目前的轨道,也许是通过高同心度迁移(HEM),这个过程也会激发偏斜。一些已知的系外行星可能正处于高同心度迁移的过程中,因为它们被观测到处于高偏心轨道上,潮汐圆化的时间尺度比它们的年龄还短。开普勒-1656 b就是这样一颗系外行星,它也是目前已知的唯一一颗对其倾角进行了约束的非巨型系外行星(0.8)。未来的工作将对外侧摄动体的相互倾角进行约束,这将是区分合理机制的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Obliquity Constraints for the Extremely Eccentric Sub-Saturn Kepler-1656 b
The orbits of close-in exoplanets provide clues to their formation and evolutionary history. Many close-in exoplanets likely formed far out in their protoplanetary disks and migrated to their current orbits, perhaps via high-eccentricity migration (HEM), a process that can also excite obliquities. A handful of known exoplanets are perhaps caught in the act of HEM, as they are observed on highly eccentric orbits with tidal circularization timescales shorter than their ages. One such exoplanet is Kepler-1656 b, which is also the only known nongiant exoplanet (<100 M⊕) with an extreme eccentricity (e = 0.84). We measured the sky-projected obliquity of Kepler-1656 b by observing the Rossiter–McLaughlin effect during a transit with the Keck Planet Finder. Our data are consistent with an aligned orbit but are also consistent with moderate misalignment with λ < 50° at 95% confidence, with the most likely solution of deg. A low obliquity would be an unlikely outcome of most eccentricity-exciting scenarios, but we show that the properties of the outer companion in the system are consistent with the coplanar HEM mechanism. Alternatively, if the system is not relatively coplanar (≲20° mutual inclination), Kepler-1656 b may be presently at a rare snapshot of long-lived eccentricity oscillations that do not induce migration. Kepler-1656 b is only the fourth exoplanet with e > 0.8 to have its obliquity constrained; expanding this population will help establish the degree to which orbital misalignment accompanies migration. Future work that constrains the mutual inclinations of outer perturbers will be key for distinguishing plausible mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信