M. Erin Moir, Adam T. Corkery, Kathleen B. Miller, Andrew G. Pearson, Nicole A. Loggie, Avery A. Apfelbeck, Anna J. Howery, Jill N. Barnes
{"title":"有氧运动强度和剂量的独立效应和联合效应可不同程度地增加运动后脑剪切应力和血流量。","authors":"M. Erin Moir, Adam T. Corkery, Kathleen B. Miller, Andrew G. Pearson, Nicole A. Loggie, Avery A. Apfelbeck, Anna J. Howery, Jill N. Barnes","doi":"10.1113/EP091856","DOIUrl":null,"url":null,"abstract":"<p>This research examined the impact of aerobic exercise intensity and dose on acute post-exercise cerebral shear stress and blood flow. Fourteen young adults (27 ± 5 years of age, eight females) completed a maximal oxygen uptake (<span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>V</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mi>max</mi>\n </mrow>\n </msub>\n <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}\\max }}$</annotation>\n </semantics></math>) treadmill test followed by three randomized study visits: treadmill exercise at 30% of <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>V</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mi>max</mi>\n </mrow>\n </msub>\n <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}\\max }}$</annotation>\n </semantics></math> for 30 min, 70% of <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>V</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mi>max</mi>\n </mrow>\n </msub>\n <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}\\max }}$</annotation>\n </semantics></math> for 30 min and 70% of <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>V</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mi>max</mi>\n </mrow>\n </msub>\n <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}\\max }}$</annotation>\n </semantics></math> for a duration that resulted in caloric expenditure equal to that in the 30% <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>V</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mi>max</mi>\n </mrow>\n </msub>\n <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}\\max }}$</annotation>\n </semantics></math> visit (EqEE). A venous blood draw and internal carotid artery (ICA) ultrasound were collected before and immediately following exercise. ICA diameter and blood velocity were determined using automated edge detection software, and blood flow was calculated. Using measures of blood viscosity, shear stress was calculated. Aerobic exercise increased ICA shear stress (time: <i>P </i>= 0.005, condition: <i>P </i>= 0.012) and the increase was greater following exercise at 70% <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>V</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mi>max</mi>\n </mrow>\n </msub>\n <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}\\max }}$</annotation>\n </semantics></math> (∆4.1 ± 3.5 dyn/cm<sup>2</sup>) compared with 30% <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>V</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mi>max</mi>\n </mrow>\n </msub>\n <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}\\max }}$</annotation>\n </semantics></math> (∆1.1 ± 1.9 dyn/cm<sup>2</sup>; <i>P </i>= 0.041). ICA blood flow remained elevated following exercise (time: <i>P </i>= 0.002, condition: <i>P </i>= 0.010) with greater increases after 70% <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>V</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mi>max</mi>\n </mrow>\n </msub>\n <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}\\max }}$</annotation>\n </semantics></math> (Δ268 ± 150 mL/min) compared with 30% <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>V</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mi>max</mi>\n </mrow>\n </msub>\n <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}\\max }}$</annotation>\n </semantics></math> (∆125 ± 149 mL/min; <i>P </i>= 0.041) or 70% <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>V</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mi>max</mi>\n </mrow>\n </msub>\n <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}\\max }}$</annotation>\n </semantics></math> EqEE (∆127 ± 177 mL/min; <i>P </i>= 0.004). Therefore, aerobic exercise resulted in both intensity- and dose-dependent effects on acute post-exercise ICA blood flow whereby vigorous intensity exercise provoked a larger increase in ICA blood flow compared to light intensity exercise when performed at a higher dose.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":"109 10","pages":"1796-1805"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442852/pdf/","citationCount":"0","resultStr":"{\"title\":\"The independent and combined effects of aerobic exercise intensity and dose differentially increase post-exercise cerebral shear stress and blood flow\",\"authors\":\"M. Erin Moir, Adam T. Corkery, Kathleen B. Miller, Andrew G. Pearson, Nicole A. Loggie, Avery A. Apfelbeck, Anna J. Howery, Jill N. Barnes\",\"doi\":\"10.1113/EP091856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research examined the impact of aerobic exercise intensity and dose on acute post-exercise cerebral shear stress and blood flow. Fourteen young adults (27 ± 5 years of age, eight females) completed a maximal oxygen uptake (<span></span><math>\\n <semantics>\\n <msub>\\n <mover>\\n <mi>V</mi>\\n <mo>̇</mo>\\n </mover>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>max</mi>\\n </mrow>\\n </msub>\\n <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}\\\\max }}$</annotation>\\n </semantics></math>) treadmill test followed by three randomized study visits: treadmill exercise at 30% of <span></span><math>\\n <semantics>\\n <msub>\\n <mover>\\n <mi>V</mi>\\n <mo>̇</mo>\\n </mover>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>max</mi>\\n </mrow>\\n </msub>\\n <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}\\\\max }}$</annotation>\\n </semantics></math> for 30 min, 70% of <span></span><math>\\n <semantics>\\n <msub>\\n <mover>\\n <mi>V</mi>\\n <mo>̇</mo>\\n </mover>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>max</mi>\\n </mrow>\\n </msub>\\n <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}\\\\max }}$</annotation>\\n </semantics></math> for 30 min and 70% of <span></span><math>\\n <semantics>\\n <msub>\\n <mover>\\n <mi>V</mi>\\n <mo>̇</mo>\\n </mover>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>max</mi>\\n </mrow>\\n </msub>\\n <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}\\\\max }}$</annotation>\\n </semantics></math> for a duration that resulted in caloric expenditure equal to that in the 30% <span></span><math>\\n <semantics>\\n <msub>\\n <mover>\\n <mi>V</mi>\\n <mo>̇</mo>\\n </mover>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>max</mi>\\n </mrow>\\n </msub>\\n <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}\\\\max }}$</annotation>\\n </semantics></math> visit (EqEE). A venous blood draw and internal carotid artery (ICA) ultrasound were collected before and immediately following exercise. ICA diameter and blood velocity were determined using automated edge detection software, and blood flow was calculated. Using measures of blood viscosity, shear stress was calculated. Aerobic exercise increased ICA shear stress (time: <i>P </i>= 0.005, condition: <i>P </i>= 0.012) and the increase was greater following exercise at 70% <span></span><math>\\n <semantics>\\n <msub>\\n <mover>\\n <mi>V</mi>\\n <mo>̇</mo>\\n </mover>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>max</mi>\\n </mrow>\\n </msub>\\n <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}\\\\max }}$</annotation>\\n </semantics></math> (∆4.1 ± 3.5 dyn/cm<sup>2</sup>) compared with 30% <span></span><math>\\n <semantics>\\n <msub>\\n <mover>\\n <mi>V</mi>\\n <mo>̇</mo>\\n </mover>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>max</mi>\\n </mrow>\\n </msub>\\n <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}\\\\max }}$</annotation>\\n </semantics></math> (∆1.1 ± 1.9 dyn/cm<sup>2</sup>; <i>P </i>= 0.041). ICA blood flow remained elevated following exercise (time: <i>P </i>= 0.002, condition: <i>P </i>= 0.010) with greater increases after 70% <span></span><math>\\n <semantics>\\n <msub>\\n <mover>\\n <mi>V</mi>\\n <mo>̇</mo>\\n </mover>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>max</mi>\\n </mrow>\\n </msub>\\n <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}\\\\max }}$</annotation>\\n </semantics></math> (Δ268 ± 150 mL/min) compared with 30% <span></span><math>\\n <semantics>\\n <msub>\\n <mover>\\n <mi>V</mi>\\n <mo>̇</mo>\\n </mover>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>max</mi>\\n </mrow>\\n </msub>\\n <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}\\\\max }}$</annotation>\\n </semantics></math> (∆125 ± 149 mL/min; <i>P </i>= 0.041) or 70% <span></span><math>\\n <semantics>\\n <msub>\\n <mover>\\n <mi>V</mi>\\n <mo>̇</mo>\\n </mover>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>max</mi>\\n </mrow>\\n </msub>\\n <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}\\\\max }}$</annotation>\\n </semantics></math> EqEE (∆127 ± 177 mL/min; <i>P </i>= 0.004). Therefore, aerobic exercise resulted in both intensity- and dose-dependent effects on acute post-exercise ICA blood flow whereby vigorous intensity exercise provoked a larger increase in ICA blood flow compared to light intensity exercise when performed at a higher dose.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\"109 10\",\"pages\":\"1796-1805\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442852/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1113/EP091856\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1113/EP091856","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了有氧运动强度和剂量对运动后急性脑切变应力和血流的影响。14 名年轻成年人(27 ± 5 岁,8 名女性)完成了最大摄氧量(V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}_2}\max }}$ )的跑步机测试,随后进行了三次随机研究访问:以最大 V ➩ O 2 的 30% ${{\dot{V}}_{{{{\mathrm{O}}}2}\max }}$ 的速度进行跑步机运动 30 分钟、30 分钟内最大 V 哚 O 2 的 70% ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$,以及 30 分钟内最大 V 哚 O 2 的 70% ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$。 访问期间的热量消耗与最大 V 哚 O 2 ${{dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ 访问期间的热量消耗相同(EqEE)。在运动前和运动后立即进行静脉抽血和颈内动脉(ICA)超声波检查。使用自动边缘检测软件确定颈内动脉直径和血流速度,并计算血流量。通过测量血液粘度,计算剪应力。有氧运动会增加 ICA 剪切应力(时间:P = 0.005,条件:P = 0.012),在 70% V ➤ O 2 max ${{dot{V}}_{{{{\mathrm{O}}_2}\max }}$ 运动后增加更大(∆4.与 30% V ̇ O 2 max ${{dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ (∆1.1 ± 1.9 dyn/cm2; P = 0.041)相比,30% V ̇ O 2 max ${{dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ (∆1.1 ± 1.9 dyn/cm2; P = 0.041)。ICA 血流在运动后保持升高(时间:P = 0.002,条件:P = 0.010),与 30% V ̇ O 2 max ${{dot{V}}_{{{{\mathrm{O}}}_2}\max }}$(Δ268 ± 150 mL/min)相比,70% V ̇ O 2 max ${{dot{V}}_{{{{\mathrm{O}}}_2}\max }}$(Δ125 ± 149 mL/min; P = 0.041)或 70% V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}}\max }}$ EqEE(∆127 ± 177 mL/min;P = 0.004)。因此,有氧运动对运动后急性ICA血流的影响具有强度和剂量依赖性,与轻度运动相比,在较高剂量下,剧烈运动能引起ICA血流的更大增加。
The independent and combined effects of aerobic exercise intensity and dose differentially increase post-exercise cerebral shear stress and blood flow
This research examined the impact of aerobic exercise intensity and dose on acute post-exercise cerebral shear stress and blood flow. Fourteen young adults (27 ± 5 years of age, eight females) completed a maximal oxygen uptake () treadmill test followed by three randomized study visits: treadmill exercise at 30% of for 30 min, 70% of for 30 min and 70% of for a duration that resulted in caloric expenditure equal to that in the 30% visit (EqEE). A venous blood draw and internal carotid artery (ICA) ultrasound were collected before and immediately following exercise. ICA diameter and blood velocity were determined using automated edge detection software, and blood flow was calculated. Using measures of blood viscosity, shear stress was calculated. Aerobic exercise increased ICA shear stress (time: P = 0.005, condition: P = 0.012) and the increase was greater following exercise at 70% (∆4.1 ± 3.5 dyn/cm2) compared with 30% (∆1.1 ± 1.9 dyn/cm2; P = 0.041). ICA blood flow remained elevated following exercise (time: P = 0.002, condition: P = 0.010) with greater increases after 70% (Δ268 ± 150 mL/min) compared with 30% (∆125 ± 149 mL/min; P = 0.041) or 70% EqEE (∆127 ± 177 mL/min; P = 0.004). Therefore, aerobic exercise resulted in both intensity- and dose-dependent effects on acute post-exercise ICA blood flow whereby vigorous intensity exercise provoked a larger increase in ICA blood flow compared to light intensity exercise when performed at a higher dose.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.