Giovanni de Alteriis , Crescenzo Violante , Fabrizio Pepe
{"title":"伊斯基亚火山岛(意大利第勒尼安海)南侧地坪的深层重力不稳定性","authors":"Giovanni de Alteriis , Crescenzo Violante , Fabrizio Pepe","doi":"10.1016/j.jvolgeores.2024.108148","DOIUrl":null,"url":null,"abstract":"<div><p>Ischia Island is an active volcano representing the emerged sector of an <em>E</em>-W trending volcanic ridge largely extending undersea. Its collapsing behaviour, mainly in the form of fast-moving, terrestrial and submarine debris avalanches, has been recognized during the Holocene, but much less is known about previous gravity-driven processes. Using high-resolution multibeam bathymetric data and seismic reflection profiles, we provide evidence that the Island's southwestern flank has been involved in a slow-moving, deep-seated slope deformation that has displaced large volumes of its apron since the Late Pleistocene and until very recent or contemporary times. A long tongue of deformed seafloor, spreading up to 45 km from the Island over an area of 330 km<sup>2</sup>, between 500 and 1300 m water depths, has been detected along its southwestern slope. Different types of mass movements, genetically associated with each other, characterize this landslide: 1) a basal slump anticline, corresponding to a bulge on the bathymetry detaching at about 400 m sub-bottom depth; 2) an intermediate-mass movement chiefly consisting of debris avalanches and debris/turbiditic flows; 3) an upper mass movement consisting of hundred-metre size slumps detaching at relatively shallow depths. Conservative estimates indicate that at least 50 km<sup>3</sup> of volcano-clastic and hemipelagic deposits have been mobilized, most of which comprise the basal slump anticline. This submarine landslide can be explained as a gravity failure of the continental slope unrelated to volcanism or rather as a process related to the dynamics of the volcanic edifice, which would imply volcano-spreading.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"453 ","pages":"Article 108148"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-seated gravity instability of the southern apron of the Ischia volcanic island (Tyrrhenian Sea, Italy)\",\"authors\":\"Giovanni de Alteriis , Crescenzo Violante , Fabrizio Pepe\",\"doi\":\"10.1016/j.jvolgeores.2024.108148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ischia Island is an active volcano representing the emerged sector of an <em>E</em>-W trending volcanic ridge largely extending undersea. Its collapsing behaviour, mainly in the form of fast-moving, terrestrial and submarine debris avalanches, has been recognized during the Holocene, but much less is known about previous gravity-driven processes. Using high-resolution multibeam bathymetric data and seismic reflection profiles, we provide evidence that the Island's southwestern flank has been involved in a slow-moving, deep-seated slope deformation that has displaced large volumes of its apron since the Late Pleistocene and until very recent or contemporary times. A long tongue of deformed seafloor, spreading up to 45 km from the Island over an area of 330 km<sup>2</sup>, between 500 and 1300 m water depths, has been detected along its southwestern slope. Different types of mass movements, genetically associated with each other, characterize this landslide: 1) a basal slump anticline, corresponding to a bulge on the bathymetry detaching at about 400 m sub-bottom depth; 2) an intermediate-mass movement chiefly consisting of debris avalanches and debris/turbiditic flows; 3) an upper mass movement consisting of hundred-metre size slumps detaching at relatively shallow depths. Conservative estimates indicate that at least 50 km<sup>3</sup> of volcano-clastic and hemipelagic deposits have been mobilized, most of which comprise the basal slump anticline. This submarine landslide can be explained as a gravity failure of the continental slope unrelated to volcanism or rather as a process related to the dynamics of the volcanic edifice, which would imply volcano-spreading.</p></div>\",\"PeriodicalId\":54753,\"journal\":{\"name\":\"Journal of Volcanology and Geothermal Research\",\"volume\":\"453 \",\"pages\":\"Article 108148\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Volcanology and Geothermal Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377027324001409\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324001409","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Deep-seated gravity instability of the southern apron of the Ischia volcanic island (Tyrrhenian Sea, Italy)
Ischia Island is an active volcano representing the emerged sector of an E-W trending volcanic ridge largely extending undersea. Its collapsing behaviour, mainly in the form of fast-moving, terrestrial and submarine debris avalanches, has been recognized during the Holocene, but much less is known about previous gravity-driven processes. Using high-resolution multibeam bathymetric data and seismic reflection profiles, we provide evidence that the Island's southwestern flank has been involved in a slow-moving, deep-seated slope deformation that has displaced large volumes of its apron since the Late Pleistocene and until very recent or contemporary times. A long tongue of deformed seafloor, spreading up to 45 km from the Island over an area of 330 km2, between 500 and 1300 m water depths, has been detected along its southwestern slope. Different types of mass movements, genetically associated with each other, characterize this landslide: 1) a basal slump anticline, corresponding to a bulge on the bathymetry detaching at about 400 m sub-bottom depth; 2) an intermediate-mass movement chiefly consisting of debris avalanches and debris/turbiditic flows; 3) an upper mass movement consisting of hundred-metre size slumps detaching at relatively shallow depths. Conservative estimates indicate that at least 50 km3 of volcano-clastic and hemipelagic deposits have been mobilized, most of which comprise the basal slump anticline. This submarine landslide can be explained as a gravity failure of the continental slope unrelated to volcanism or rather as a process related to the dynamics of the volcanic edifice, which would imply volcano-spreading.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.