使用时域节点非连续伽勒金方法对建筑物内的声辐射和传播进行数值建模

IF 3.4 2区 物理与天体物理 Q1 ACOUSTICS
{"title":"使用时域节点非连续伽勒金方法对建筑物内的声辐射和传播进行数值建模","authors":"","doi":"10.1016/j.apacoust.2024.110197","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents numerical solutions for two vibroacoustic problems using the time-domain nodal discontinuous Galerkin (DG) method. The first problem is the impact sound radiation from a rectangular slab into a cuboid room, and the second is the sound transmission between two cuboid rooms with direct and flanking contributions. The structures are modelled as a three-dimensional solid governed by the linear elasticity equations, and sound propagation in the rooms is governed by the linear acoustic equations. In the impact sound radiation case, the normalised sound pressure is evaluated and compared to the one obtained by the modal expansion method. In the sound transmission case, pressure transfer functions between different positions are calculated and compared to those obtained by the finite element method (FEM). The upwind numerical fluxes in DG for both governing equations, as well as the coupling conditions, are presented. There is excellent agreement between the solutions obtained by the nodal DG and those obtained by the modal expansion method/FEM. Although minor discrepancies exist in the resonance frequencies and magnitude, the overall trend shows good agreement.</p></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical modelling of sound radiation and transmission in buildings using the time-domain nodal discontinuous Galerkin method\",\"authors\":\"\",\"doi\":\"10.1016/j.apacoust.2024.110197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents numerical solutions for two vibroacoustic problems using the time-domain nodal discontinuous Galerkin (DG) method. The first problem is the impact sound radiation from a rectangular slab into a cuboid room, and the second is the sound transmission between two cuboid rooms with direct and flanking contributions. The structures are modelled as a three-dimensional solid governed by the linear elasticity equations, and sound propagation in the rooms is governed by the linear acoustic equations. In the impact sound radiation case, the normalised sound pressure is evaluated and compared to the one obtained by the modal expansion method. In the sound transmission case, pressure transfer functions between different positions are calculated and compared to those obtained by the finite element method (FEM). The upwind numerical fluxes in DG for both governing equations, as well as the coupling conditions, are presented. There is excellent agreement between the solutions obtained by the nodal DG and those obtained by the modal expansion method/FEM. Although minor discrepancies exist in the resonance frequencies and magnitude, the overall trend shows good agreement.</p></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X24003487\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24003487","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用时域节点非连续伽勒金(DG)方法对两个振动声学问题进行了数值求解。第一个问题是矩形板对长方体房间的冲击声辐射,第二个问题是两个长方体房间之间的声音传播,包括直接传播和侧面传播。结构被模拟为三维实体,受线性弹性方程控制,房间内的声音传播受线性声学方程控制。在冲击声辐射情况下,对归一化声压进行了评估,并与模态扩展法获得的声压进行了比较。在声音传播情况下,计算了不同位置之间的压力传递函数,并与有限元法(FEM)得出的结果进行了比较。此外,还给出了两个控制方程在 DG 中的上风数值通量以及耦合条件。节点 DG 和模态展开法/有限元法获得的解非常一致。虽然在共振频率和幅度方面存在细微差别,但总体趋势显示出良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical modelling of sound radiation and transmission in buildings using the time-domain nodal discontinuous Galerkin method

This study presents numerical solutions for two vibroacoustic problems using the time-domain nodal discontinuous Galerkin (DG) method. The first problem is the impact sound radiation from a rectangular slab into a cuboid room, and the second is the sound transmission between two cuboid rooms with direct and flanking contributions. The structures are modelled as a three-dimensional solid governed by the linear elasticity equations, and sound propagation in the rooms is governed by the linear acoustic equations. In the impact sound radiation case, the normalised sound pressure is evaluated and compared to the one obtained by the modal expansion method. In the sound transmission case, pressure transfer functions between different positions are calculated and compared to those obtained by the finite element method (FEM). The upwind numerical fluxes in DG for both governing equations, as well as the coupling conditions, are presented. There is excellent agreement between the solutions obtained by the nodal DG and those obtained by the modal expansion method/FEM. Although minor discrepancies exist in the resonance frequencies and magnitude, the overall trend shows good agreement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Acoustics
Applied Acoustics 物理-声学
CiteScore
7.40
自引率
11.80%
发文量
618
审稿时长
7.5 months
期刊介绍: Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense. Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems. Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信