利用猪骨髓原始细胞分离猪圆环病毒 3

IF 4 3区 医学 Q2 VIROLOGY
Shizuka Hayashi, Fumihiko Katakura, Tadaaki Moritomo, Nobuyuki Tsutsumi, Katsuaki Sugiura, Tetsuo Sato
{"title":"利用猪骨髓原始细胞分离猪圆环病毒 3","authors":"Shizuka Hayashi, Fumihiko Katakura, Tadaaki Moritomo, Nobuyuki Tsutsumi, Katsuaki Sugiura, Tetsuo Sato","doi":"10.1186/s12985-024-02463-2","DOIUrl":null,"url":null,"abstract":"Porcine circovirus 3 (PCV3) was first reported in the United States in 2016; this virus is considered to be involved in diverse pathologies, such as multisystem inflammation, porcine dermatitis and nephropathy syndrome, and reproductive disorders. However, successful isolation of PCV3 using cultured cells has been rare. In this study, we aimed to isolate PCV3 using primary porcine bone marrow-derived cells. Mononuclear cells were isolated from the femur bones of clinically healthy pigs. These primary cells were cultured for 6–10 days post-seeding and infected with PCV3-containing tissue homogenates. The cells were cultured for up to 37 days, and the culture medium was changed every 3–4 days. The growth curve of PCV3 in porcine bone marrow cells revealed a decline in growth during the first 10 days post-infection, followed by an increase leading to > 1010 genomic copies/mL of the cell culture supernatant; moreover, the virus was capable of passaging. The indirect fluorescent antibody assay for PCV3 infection revealed the presence of PCV3 capsid protein in the cytoplasm and nuclei of infected cells. Bone marrow cells were passaged for more than 20 generations (over 5 months), and PCV3 persistently infected the cells. PCV3-infected bone marrow cells expressed mesenchymal markers. These results reflect that primary porcine bone marrow-derived mesenchymal cells are permissive to PCV3 and continuously replicate a high copy number of the PCV3 genome. These findings regarding the high replication rate of PCV3 in bone marrow-derived mesenchymal cells could enhance our understanding of PCV3 pathogenicity.","PeriodicalId":23616,"journal":{"name":"Virology Journal","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation of porcine circovirus 3 using primary porcine bone marrow-derived cells\",\"authors\":\"Shizuka Hayashi, Fumihiko Katakura, Tadaaki Moritomo, Nobuyuki Tsutsumi, Katsuaki Sugiura, Tetsuo Sato\",\"doi\":\"10.1186/s12985-024-02463-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Porcine circovirus 3 (PCV3) was first reported in the United States in 2016; this virus is considered to be involved in diverse pathologies, such as multisystem inflammation, porcine dermatitis and nephropathy syndrome, and reproductive disorders. However, successful isolation of PCV3 using cultured cells has been rare. In this study, we aimed to isolate PCV3 using primary porcine bone marrow-derived cells. Mononuclear cells were isolated from the femur bones of clinically healthy pigs. These primary cells were cultured for 6–10 days post-seeding and infected with PCV3-containing tissue homogenates. The cells were cultured for up to 37 days, and the culture medium was changed every 3–4 days. The growth curve of PCV3 in porcine bone marrow cells revealed a decline in growth during the first 10 days post-infection, followed by an increase leading to > 1010 genomic copies/mL of the cell culture supernatant; moreover, the virus was capable of passaging. The indirect fluorescent antibody assay for PCV3 infection revealed the presence of PCV3 capsid protein in the cytoplasm and nuclei of infected cells. Bone marrow cells were passaged for more than 20 generations (over 5 months), and PCV3 persistently infected the cells. PCV3-infected bone marrow cells expressed mesenchymal markers. These results reflect that primary porcine bone marrow-derived mesenchymal cells are permissive to PCV3 and continuously replicate a high copy number of the PCV3 genome. These findings regarding the high replication rate of PCV3 in bone marrow-derived mesenchymal cells could enhance our understanding of PCV3 pathogenicity.\",\"PeriodicalId\":23616,\"journal\":{\"name\":\"Virology Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virology Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12985-024-02463-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12985-024-02463-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

猪圆环病毒 3(PCV3)于 2016 年首次在美国被报道;这种病毒被认为与多种病症有关,如多系统炎症、猪皮炎和肾病综合征以及繁殖障碍。然而,利用培养细胞成功分离 PCV3 的情况并不多见。在本研究中,我们的目标是利用原代猪骨髓衍生细胞分离 PCV3。我们从临床健康猪的股骨中分离出单核细胞。将这些原代细胞培养 6-10 天后,用含有 PCV3 的组织匀浆进行感染。细胞培养时间长达 37 天,每 3-4 天更换一次培养基。PCV3 在猪骨髓细胞中的生长曲线显示,在感染后的前 10 天内生长速度下降,随后生长速度加快,细胞培养上清中的基因组拷贝数大于 1010 个/毫升;此外,病毒还具有传代能力。PCV3 感染的间接荧光抗体检测显示,受感染细胞的细胞质和细胞核中存在 PCV3 帽状蛋白。骨髓细胞传代超过 20 代(超过 5 个月),PCV3 持续感染细胞。感染 PCV3 的骨髓细胞表达间质标记。这些结果表明,原代猪骨髓间充质细胞对 PCV3 有亲和力,并能持续复制高拷贝数的 PCV3 基因组。这些关于 PCV3 在骨髓间充质细胞中的高复制率的发现可加深我们对 PCV3 致病性的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolation of porcine circovirus 3 using primary porcine bone marrow-derived cells
Porcine circovirus 3 (PCV3) was first reported in the United States in 2016; this virus is considered to be involved in diverse pathologies, such as multisystem inflammation, porcine dermatitis and nephropathy syndrome, and reproductive disorders. However, successful isolation of PCV3 using cultured cells has been rare. In this study, we aimed to isolate PCV3 using primary porcine bone marrow-derived cells. Mononuclear cells were isolated from the femur bones of clinically healthy pigs. These primary cells were cultured for 6–10 days post-seeding and infected with PCV3-containing tissue homogenates. The cells were cultured for up to 37 days, and the culture medium was changed every 3–4 days. The growth curve of PCV3 in porcine bone marrow cells revealed a decline in growth during the first 10 days post-infection, followed by an increase leading to > 1010 genomic copies/mL of the cell culture supernatant; moreover, the virus was capable of passaging. The indirect fluorescent antibody assay for PCV3 infection revealed the presence of PCV3 capsid protein in the cytoplasm and nuclei of infected cells. Bone marrow cells were passaged for more than 20 generations (over 5 months), and PCV3 persistently infected the cells. PCV3-infected bone marrow cells expressed mesenchymal markers. These results reflect that primary porcine bone marrow-derived mesenchymal cells are permissive to PCV3 and continuously replicate a high copy number of the PCV3 genome. These findings regarding the high replication rate of PCV3 in bone marrow-derived mesenchymal cells could enhance our understanding of PCV3 pathogenicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virology Journal
Virology Journal 医学-病毒学
CiteScore
7.40
自引率
2.10%
发文量
186
审稿时长
1 months
期刊介绍: Virology Journal is an open access, peer reviewed journal that considers articles on all aspects of virology, including research on the viruses of animals, plants and microbes. The journal welcomes basic research as well as pre-clinical and clinical studies of novel diagnostic tools, vaccines and anti-viral therapies. The Editorial policy of Virology Journal is to publish all research which is assessed by peer reviewers to be a coherent and sound addition to the scientific literature, and puts less emphasis on interest levels or perceived impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信