{"title":"开源社区中虚假网络安全威胁情报的网络语义挖掘方法","authors":"Zhihua Li, Xinye Yu, Yukai Zhao","doi":"10.4018/ijswis.350095","DOIUrl":null,"url":null,"abstract":"In order to overcome the challenges of inadequate classification accuracy in existing fake cybersecurity threat intelligence mining methods and the lack of high-quality public datasets for training classification models, we propose a novel approach that significantly advances the field. We improved the attention mechanism and designed a generative adversarial network based on the improved attention mechanism to generate fake cybersecurity threat intelligence. Additionally, we refine text tokenization techniques and design a detection model to detect fake cybersecurity threats intelligence. Using our STIX-CTIs dataset, our method achieves a remarkable accuracy of 96.1%, outperforming current text classification models. Through the utilization of our generated fake cybersecurity threat intelligence, we successfully mimic data poisoning attacks within open-source communities. When paired with our detection model, this research not only improves detection accuracy but also provides a powerful tool for enhancing the security and integrity of open-source ecosystems.","PeriodicalId":508238,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"22 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Web Semantic Mining Method for Fake Cybersecurity Threat Intelligence in Open Source Communities\",\"authors\":\"Zhihua Li, Xinye Yu, Yukai Zhao\",\"doi\":\"10.4018/ijswis.350095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to overcome the challenges of inadequate classification accuracy in existing fake cybersecurity threat intelligence mining methods and the lack of high-quality public datasets for training classification models, we propose a novel approach that significantly advances the field. We improved the attention mechanism and designed a generative adversarial network based on the improved attention mechanism to generate fake cybersecurity threat intelligence. Additionally, we refine text tokenization techniques and design a detection model to detect fake cybersecurity threats intelligence. Using our STIX-CTIs dataset, our method achieves a remarkable accuracy of 96.1%, outperforming current text classification models. Through the utilization of our generated fake cybersecurity threat intelligence, we successfully mimic data poisoning attacks within open-source communities. When paired with our detection model, this research not only improves detection accuracy but also provides a powerful tool for enhancing the security and integrity of open-source ecosystems.\",\"PeriodicalId\":508238,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"22 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.350095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijswis.350095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Web Semantic Mining Method for Fake Cybersecurity Threat Intelligence in Open Source Communities
In order to overcome the challenges of inadequate classification accuracy in existing fake cybersecurity threat intelligence mining methods and the lack of high-quality public datasets for training classification models, we propose a novel approach that significantly advances the field. We improved the attention mechanism and designed a generative adversarial network based on the improved attention mechanism to generate fake cybersecurity threat intelligence. Additionally, we refine text tokenization techniques and design a detection model to detect fake cybersecurity threats intelligence. Using our STIX-CTIs dataset, our method achieves a remarkable accuracy of 96.1%, outperforming current text classification models. Through the utilization of our generated fake cybersecurity threat intelligence, we successfully mimic data poisoning attacks within open-source communities. When paired with our detection model, this research not only improves detection accuracy but also provides a powerful tool for enhancing the security and integrity of open-source ecosystems.