Erika Gabriele Alves Alcântara, Reinhard Meinke, Sören Selve, Ali Can Kaya, Claudia Fleck
{"title":"用激光粉末床熔融技术加工的 β-易变 Ti-5Al-5Mo-5V-3Cr 合金的疲劳和腐蚀疲劳行为","authors":"Erika Gabriele Alves Alcântara, Reinhard Meinke, Sören Selve, Ali Can Kaya, Claudia Fleck","doi":"10.1111/ffe.14394","DOIUrl":null,"url":null,"abstract":"<p>We performed rotating bending tests and axial (tension-compression) load-increase and constant amplitude high-cycle fatigue tests in air and Hanks' balanced salt solution (HBSS) on the β-metastable titanium alloy Ti-5Al-5Mo-5V-3Cr, processed by laser powder bed fusion (LPBF-M), solution-treated and aged, and shot-peened. Rotating bending loading in air revealed a strong influence of process-induced flaws on fatigue endurance. Especially in the high-cycle fatigue range and the transition region, the stochastic distribution of the flaws and flaw sizes led to a high scatter of the number of cycles to failure. The axial load-increase tests yielded a good fatigue life estimation, with a negligible difference between air and HBSS. The cyclic deformation behavior in HBSS was also strongly influenced by the local microstructure and defect distribution, and, thus, by crack formation and propagation. Plastic deformation and microcrack growth interact, and their relative amount resulted in different progressions of the plastic strain amplitude over the number of cycles for different specimens. Changes in the free corrosion potential and the corrosion current were highly sensitive indicators for fatigue-induced damage on the rough surfaces, which was correlated to the microscopic examination, fracture surface features, and the fatigue crack development.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 10","pages":"3832-3847"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14394","citationCount":"0","resultStr":"{\"title\":\"Fatigue and corrosion-fatigue behavior of the β-metastable Ti-5Al-5Mo-5V-3Cr alloy processed by laser powder bed fusion\",\"authors\":\"Erika Gabriele Alves Alcântara, Reinhard Meinke, Sören Selve, Ali Can Kaya, Claudia Fleck\",\"doi\":\"10.1111/ffe.14394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We performed rotating bending tests and axial (tension-compression) load-increase and constant amplitude high-cycle fatigue tests in air and Hanks' balanced salt solution (HBSS) on the β-metastable titanium alloy Ti-5Al-5Mo-5V-3Cr, processed by laser powder bed fusion (LPBF-M), solution-treated and aged, and shot-peened. Rotating bending loading in air revealed a strong influence of process-induced flaws on fatigue endurance. Especially in the high-cycle fatigue range and the transition region, the stochastic distribution of the flaws and flaw sizes led to a high scatter of the number of cycles to failure. The axial load-increase tests yielded a good fatigue life estimation, with a negligible difference between air and HBSS. The cyclic deformation behavior in HBSS was also strongly influenced by the local microstructure and defect distribution, and, thus, by crack formation and propagation. Plastic deformation and microcrack growth interact, and their relative amount resulted in different progressions of the plastic strain amplitude over the number of cycles for different specimens. Changes in the free corrosion potential and the corrosion current were highly sensitive indicators for fatigue-induced damage on the rough surfaces, which was correlated to the microscopic examination, fracture surface features, and the fatigue crack development.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 10\",\"pages\":\"3832-3847\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14394\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14394\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14394","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Fatigue and corrosion-fatigue behavior of the β-metastable Ti-5Al-5Mo-5V-3Cr alloy processed by laser powder bed fusion
We performed rotating bending tests and axial (tension-compression) load-increase and constant amplitude high-cycle fatigue tests in air and Hanks' balanced salt solution (HBSS) on the β-metastable titanium alloy Ti-5Al-5Mo-5V-3Cr, processed by laser powder bed fusion (LPBF-M), solution-treated and aged, and shot-peened. Rotating bending loading in air revealed a strong influence of process-induced flaws on fatigue endurance. Especially in the high-cycle fatigue range and the transition region, the stochastic distribution of the flaws and flaw sizes led to a high scatter of the number of cycles to failure. The axial load-increase tests yielded a good fatigue life estimation, with a negligible difference between air and HBSS. The cyclic deformation behavior in HBSS was also strongly influenced by the local microstructure and defect distribution, and, thus, by crack formation and propagation. Plastic deformation and microcrack growth interact, and their relative amount resulted in different progressions of the plastic strain amplitude over the number of cycles for different specimens. Changes in the free corrosion potential and the corrosion current were highly sensitive indicators for fatigue-induced damage on the rough surfaces, which was correlated to the microscopic examination, fracture surface features, and the fatigue crack development.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.