镧系元素结合肽表面活性剂在空气-水界面上的界面流变学。

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2024-08-06 DOI:10.1039/D4SM00493K
Stephen A. Crane, Felipe Jiménez-Ángeles, Yiming Wang, Luis E. Ortuno Macias, Jason G. Marmorstein, Jiayi Deng, Mehdi Molaei, E. James Petersson, Ravi Radhakrishnan, Cesar de la Fuente-Nunez, Monica Olvera de la Cruz, Raymond S. Tu, Charles Maldarelli, Ivan J. Dmochowski and Kathleen J. Stebe
{"title":"镧系元素结合肽表面活性剂在空气-水界面上的界面流变学。","authors":"Stephen A. Crane, Felipe Jiménez-Ángeles, Yiming Wang, Luis E. Ortuno Macias, Jason G. Marmorstein, Jiayi Deng, Mehdi Molaei, E. James Petersson, Ravi Radhakrishnan, Cesar de la Fuente-Nunez, Monica Olvera de la Cruz, Raymond S. Tu, Charles Maldarelli, Ivan J. Dmochowski and Kathleen J. Stebe","doi":"10.1039/D4SM00493K","DOIUrl":null,"url":null,"abstract":"<p >Peptide surfactants (PEPS) are studied to capture and retain rare earth elements (REEs) at air–water interfaces to enable REE separations. Peptide sequences, designed to selectively bind REEs, depend crucially on the position of ligands within their binding loop domain. These ligands form a coordination sphere that wraps and retains the cation. We study variants of lanthanide binding tags (LBTs) designed to complex strongly with Tb<small><sup>3+</sup></small>. The peptide LBT<small><sup>5−</sup></small> (with net charge −5) is known to bind Tb<small><sup>3+</sup></small> and adsorb with more REE cations than peptide molecules, suggesting that undesired non-specific coulombic interactions occur. Rheological characterization of interfaces of LBT<small><sup>5−</sup></small> and Tb<small><sup>3+</sup></small> solutions reveal the formation of an interfacial gel. To probe whether this gelation reflects chelation among intact adsorbed LBT<small><sup>5−</sup></small>:Tb<small><sup>3+</sup></small> complexes or destruction of the binding loop, we study a variant, LBT<small><sup>3−</sup></small>, designed to form net neutral LBT<small><sup>3−</sup></small>:Tb<small><sup>3+</sup></small> complexes. Solutions of LBT<small><sup>3−</sup></small> and Tb<small><sup>3+</sup></small> form purely viscous layers in the presence of excess Tb<small><sup>3+</sup></small>, indicating that each peptide binds a single REE in an intact coordination sphere. We introduce the variant RR-LBT<small><sup>3−</sup></small> with net charge −3 and anionic ligands outside of the coordination sphere. We find that such exposed ligands promote interfacial gelation. Thus, a nuanced requirement for interfacial selectivity of PEPS is proposed: that anionic ligands outside of the coordination sphere must be avoided to prevent the non-selective recruitment of REE cations. This view is supported by simulation, including interfacial molecular dynamics simulations, and interfacial metadynamics simulations of the free energy landscape of the binding loop conformational space.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 46","pages":" 9161-9173"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sm/d4sm00493k?page=search","citationCount":"0","resultStr":"{\"title\":\"Interfacial rheology of lanthanide binding peptide surfactants at the air–water interface†\",\"authors\":\"Stephen A. Crane, Felipe Jiménez-Ángeles, Yiming Wang, Luis E. Ortuno Macias, Jason G. Marmorstein, Jiayi Deng, Mehdi Molaei, E. James Petersson, Ravi Radhakrishnan, Cesar de la Fuente-Nunez, Monica Olvera de la Cruz, Raymond S. Tu, Charles Maldarelli, Ivan J. Dmochowski and Kathleen J. Stebe\",\"doi\":\"10.1039/D4SM00493K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Peptide surfactants (PEPS) are studied to capture and retain rare earth elements (REEs) at air–water interfaces to enable REE separations. Peptide sequences, designed to selectively bind REEs, depend crucially on the position of ligands within their binding loop domain. These ligands form a coordination sphere that wraps and retains the cation. We study variants of lanthanide binding tags (LBTs) designed to complex strongly with Tb<small><sup>3+</sup></small>. The peptide LBT<small><sup>5−</sup></small> (with net charge −5) is known to bind Tb<small><sup>3+</sup></small> and adsorb with more REE cations than peptide molecules, suggesting that undesired non-specific coulombic interactions occur. Rheological characterization of interfaces of LBT<small><sup>5−</sup></small> and Tb<small><sup>3+</sup></small> solutions reveal the formation of an interfacial gel. To probe whether this gelation reflects chelation among intact adsorbed LBT<small><sup>5−</sup></small>:Tb<small><sup>3+</sup></small> complexes or destruction of the binding loop, we study a variant, LBT<small><sup>3−</sup></small>, designed to form net neutral LBT<small><sup>3−</sup></small>:Tb<small><sup>3+</sup></small> complexes. Solutions of LBT<small><sup>3−</sup></small> and Tb<small><sup>3+</sup></small> form purely viscous layers in the presence of excess Tb<small><sup>3+</sup></small>, indicating that each peptide binds a single REE in an intact coordination sphere. We introduce the variant RR-LBT<small><sup>3−</sup></small> with net charge −3 and anionic ligands outside of the coordination sphere. We find that such exposed ligands promote interfacial gelation. Thus, a nuanced requirement for interfacial selectivity of PEPS is proposed: that anionic ligands outside of the coordination sphere must be avoided to prevent the non-selective recruitment of REE cations. This view is supported by simulation, including interfacial molecular dynamics simulations, and interfacial metadynamics simulations of the free energy landscape of the binding loop conformational space.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":\" 46\",\"pages\":\" 9161-9173\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/sm/d4sm00493k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00493k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00493k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

肽表面活性剂(PEPS)被研究用于在空气-水界面捕获和保留稀土元素(REE),从而实现稀土元素分离。设计用于选择性结合稀土元素的多肽序列主要取决于配体在其结合环域中的位置。这些配体形成一个配位球,包裹并保留阳离子。我们研究了镧系元素结合标记(LBTs)的变体,这些变体设计成与 Tb3+ 紧密结合。众所周知,多肽 LBT5-(净电荷-5)会与 Tb3+ 结合,并吸附比多肽分子更多的镧系元素阳离子,这表明存在不希望发生的非特异性库仑相互作用。对 LBT5- 和 Tb3+ 溶液的界面进行流变学表征,发现形成了界面凝胶。为了探究这种凝胶现象是反映了完整吸附的 LBT5-:Tb3+ 复合物之间的螯合作用,还是反映了结合环的破坏,我们研究了一种变体 LBT3-,其目的是形成净中性的 LBT3-:Tb3+ 复合物。在存在过量 Tb3+ 的情况下,LBT3- 和 Tb3+ 的溶液会形成纯粘性层,这表明每个肽都能在完整的配位层中结合单个 REE。我们引入了变体 RR-LBT3-,其净电荷为-3,阴离子配体位于配位层之外。我们发现,这种外露配体会促进界面凝胶化。因此,我们提出了 PEPS 界面选择性的细微要求:必须避免配位球外的阴离子配体,以防止 REE 阳离子的非选择性招募。这一观点得到了包括界面分子动力学模拟和结合环构象空间自由能景观的界面元动力学模拟在内的各种模拟的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfacial rheology of lanthanide binding peptide surfactants at the air–water interface†

Interfacial rheology of lanthanide binding peptide surfactants at the air–water interface†

Interfacial rheology of lanthanide binding peptide surfactants at the air–water interface†

Peptide surfactants (PEPS) are studied to capture and retain rare earth elements (REEs) at air–water interfaces to enable REE separations. Peptide sequences, designed to selectively bind REEs, depend crucially on the position of ligands within their binding loop domain. These ligands form a coordination sphere that wraps and retains the cation. We study variants of lanthanide binding tags (LBTs) designed to complex strongly with Tb3+. The peptide LBT5− (with net charge −5) is known to bind Tb3+ and adsorb with more REE cations than peptide molecules, suggesting that undesired non-specific coulombic interactions occur. Rheological characterization of interfaces of LBT5− and Tb3+ solutions reveal the formation of an interfacial gel. To probe whether this gelation reflects chelation among intact adsorbed LBT5−:Tb3+ complexes or destruction of the binding loop, we study a variant, LBT3−, designed to form net neutral LBT3−:Tb3+ complexes. Solutions of LBT3− and Tb3+ form purely viscous layers in the presence of excess Tb3+, indicating that each peptide binds a single REE in an intact coordination sphere. We introduce the variant RR-LBT3− with net charge −3 and anionic ligands outside of the coordination sphere. We find that such exposed ligands promote interfacial gelation. Thus, a nuanced requirement for interfacial selectivity of PEPS is proposed: that anionic ligands outside of the coordination sphere must be avoided to prevent the non-selective recruitment of REE cations. This view is supported by simulation, including interfacial molecular dynamics simulations, and interfacial metadynamics simulations of the free energy landscape of the binding loop conformational space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Where physics meets chemistry meets biology for fundamental soft matter research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信