{"title":"朗缪尔单层膜为使用烷基化核苷酸研究核碱基的分子识别提供了一种有效的策略。","authors":"","doi":"10.1016/j.colsurfb.2024.114129","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular Recognition in nucleotides is crucial for medicine, underpinning precise interactions in genetic replication and therapy. Alkylated nucleotides, in particular, play a key role in modifying DNA to inhibit cancer cell growth. In this study, we focused on an alkylated nucleotide, PNM2 (3′,4′,6’-O-tristearoyl uridine or uridine tri-stearate), to investigate the interaction between adenine molecules in the aqueous subphase and PNM2 Langmuir monolayers. Utilizing techniques such as tensiometry, Brewster angle microscopy, infrared spectroscopy, surface potential measurements, and dilatational surface rheology, we found compelling evidence of molecular Recognition between the polar head of the insoluble amphiphile (uridine) in the monolayer and adenine in the aqueous subphase, attributed to hydrogen bonding. These interactions significantly influenced the physicochemical properties of the air-water interface, including monolayer expansion upon molecular recognition, decreased dilatational modulus, increased tensiometric stability of the monolayer when compressed to relevant surface pressures, and decreased surface potential. These findings are noteworthy for drug development, providing crucial insights into the mechanisms of nucleotide interactions.</p></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Langmuir monolayers provide an effective strategy for studying molecular recognition of nucleobases using alkylated nucleotides\",\"authors\":\"\",\"doi\":\"10.1016/j.colsurfb.2024.114129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Molecular Recognition in nucleotides is crucial for medicine, underpinning precise interactions in genetic replication and therapy. Alkylated nucleotides, in particular, play a key role in modifying DNA to inhibit cancer cell growth. In this study, we focused on an alkylated nucleotide, PNM2 (3′,4′,6’-O-tristearoyl uridine or uridine tri-stearate), to investigate the interaction between adenine molecules in the aqueous subphase and PNM2 Langmuir monolayers. Utilizing techniques such as tensiometry, Brewster angle microscopy, infrared spectroscopy, surface potential measurements, and dilatational surface rheology, we found compelling evidence of molecular Recognition between the polar head of the insoluble amphiphile (uridine) in the monolayer and adenine in the aqueous subphase, attributed to hydrogen bonding. These interactions significantly influenced the physicochemical properties of the air-water interface, including monolayer expansion upon molecular recognition, decreased dilatational modulus, increased tensiometric stability of the monolayer when compressed to relevant surface pressures, and decreased surface potential. These findings are noteworthy for drug development, providing crucial insights into the mechanisms of nucleotide interactions.</p></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776524003886\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524003886","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
核苷酸的分子识别对医学至关重要,是基因复制和治疗中精确互动的基础。尤其是烷基化核苷酸,在修饰 DNA 以抑制癌细胞生长方面发挥着关键作用。在这项研究中,我们以烷基化核苷酸 PNM2(3',4',6'-O-三硬脂酰尿苷或尿苷三硬脂酸酯)为研究对象,探讨水相中的腺嘌呤分子与 PNM2 朗缪尔单层之间的相互作用。利用张力测定法、布儒斯特角显微镜、红外光谱、表面电位测量和扩张表面流变学等技术,我们发现了单层中不溶性双亲化合物(尿苷)的极性头与水性亚相中的腺嘌呤之间因氢键而产生分子识别的有力证据。这些相互作用极大地影响了空气-水界面的理化性质,包括分子识别时单层的扩张、扩张模量的降低、单层被压缩至相关表面压力时张力稳定性的提高以及表面电位的降低。这些发现对药物开发具有重要意义,为了解核苷酸的相互作用机制提供了重要依据。
Langmuir monolayers provide an effective strategy for studying molecular recognition of nucleobases using alkylated nucleotides
Molecular Recognition in nucleotides is crucial for medicine, underpinning precise interactions in genetic replication and therapy. Alkylated nucleotides, in particular, play a key role in modifying DNA to inhibit cancer cell growth. In this study, we focused on an alkylated nucleotide, PNM2 (3′,4′,6’-O-tristearoyl uridine or uridine tri-stearate), to investigate the interaction between adenine molecules in the aqueous subphase and PNM2 Langmuir monolayers. Utilizing techniques such as tensiometry, Brewster angle microscopy, infrared spectroscopy, surface potential measurements, and dilatational surface rheology, we found compelling evidence of molecular Recognition between the polar head of the insoluble amphiphile (uridine) in the monolayer and adenine in the aqueous subphase, attributed to hydrogen bonding. These interactions significantly influenced the physicochemical properties of the air-water interface, including monolayer expansion upon molecular recognition, decreased dilatational modulus, increased tensiometric stability of the monolayer when compressed to relevant surface pressures, and decreased surface potential. These findings are noteworthy for drug development, providing crucial insights into the mechanisms of nucleotide interactions.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.