具有未知耦合的分数反应-扩散复杂网络的同步化

IF 6.7 2区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Mouquan Shen;Chen Wang;Qing-Guo Wang;Yonghui Sun;Guangdeng Zong
{"title":"具有未知耦合的分数反应-扩散复杂网络的同步化","authors":"Mouquan Shen;Chen Wang;Qing-Guo Wang;Yonghui Sun;Guangdeng Zong","doi":"10.1109/TNSE.2024.3432997","DOIUrl":null,"url":null,"abstract":"This paper delves into the synchronization of factional uncertain reaction-diffusion complex network. An adaptive scheme composed of time \n<inline-formula><tex-math>$t$</tex-math></inline-formula>\n and space \n<inline-formula><tex-math>$x$</tex-math></inline-formula>\n is utilized to handle unknown couplings. An output-strict passivity lemma is established by means of Green theorem, Kronecker product and the Lyapunov stability theorem. Different from classical synchronous approaches by constructing controllers, a criterion in terms of linear matrix inequality is built on the passivity lemma, Laplace transform and inverse transform to make the resultant closed-loop system be synchronization. Two examples are provided to validate the validity of the proposed methods.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"11 5","pages":"4503-4512"},"PeriodicalIF":6.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization of Fractional Reaction-Diffusion Complex Networks With Unknown Couplings\",\"authors\":\"Mouquan Shen;Chen Wang;Qing-Guo Wang;Yonghui Sun;Guangdeng Zong\",\"doi\":\"10.1109/TNSE.2024.3432997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper delves into the synchronization of factional uncertain reaction-diffusion complex network. An adaptive scheme composed of time \\n<inline-formula><tex-math>$t$</tex-math></inline-formula>\\n and space \\n<inline-formula><tex-math>$x$</tex-math></inline-formula>\\n is utilized to handle unknown couplings. An output-strict passivity lemma is established by means of Green theorem, Kronecker product and the Lyapunov stability theorem. Different from classical synchronous approaches by constructing controllers, a criterion in terms of linear matrix inequality is built on the passivity lemma, Laplace transform and inverse transform to make the resultant closed-loop system be synchronization. Two examples are provided to validate the validity of the proposed methods.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"11 5\",\"pages\":\"4503-4512\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10614883/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10614883/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文深入研究了派系不确定反应扩散复杂网络的同步问题。利用由时间 $t$ 和空间 $x$ 组成的自适应方案来处理未知耦合。通过格林定理、Kronecker 乘积和 Lyapunov 稳定性定理,建立了输出严格被动性定理。与通过构建控制器实现同步的经典方法不同,该方法在被动性定理、拉普拉斯变换和逆变换的基础上建立了线性矩阵不等式准则,从而使产生的闭环系统实现同步。本文提供了两个实例来验证所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization of Fractional Reaction-Diffusion Complex Networks With Unknown Couplings
This paper delves into the synchronization of factional uncertain reaction-diffusion complex network. An adaptive scheme composed of time $t$ and space $x$ is utilized to handle unknown couplings. An output-strict passivity lemma is established by means of Green theorem, Kronecker product and the Lyapunov stability theorem. Different from classical synchronous approaches by constructing controllers, a criterion in terms of linear matrix inequality is built on the passivity lemma, Laplace transform and inverse transform to make the resultant closed-loop system be synchronization. Two examples are provided to validate the validity of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Network Science and Engineering
IEEE Transactions on Network Science and Engineering Engineering-Control and Systems Engineering
CiteScore
12.60
自引率
9.10%
发文量
393
期刊介绍: The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信