{"title":"用于预测奥氏体不锈钢在空气和液态钠中蠕变寿命的物理信息神经网络","authors":"Huian Mei, Lingfeng Pan, Cheng Gong, Xiaotao Zheng","doi":"10.1111/ffe.14395","DOIUrl":null,"url":null,"abstract":"<p>Creep life prediction of component materials exposed to air and liquid sodium environments is critical to ensure the safe operation and structural integrity of a sodium-cooled fast reactor. In this paper, a method for predicting the creep life of a wide range of austenitic stainless steels in air and liquid sodium was proposed based on a physics-informed neural network. Based on the established datasets for sodium corrosion rates and creep life in air and liquid sodium, the predictive performance of physical equations, conventional machine learning models, and the proposed model were assessed. Subsequently, a data-driven creep life assessment framework was established, providing insight into the engineering application of machine learning methods in high-temperature structure assessment. The results show that the creep fracture of austenitic stainless steel is accelerated by liquid sodium corrosion. The proposed physics-informed neural network exhibits enhanced suitability and accuracy for predicting the sodium corrosion rate and creep life than physical equations and conventional machine learning methods.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 10","pages":"3584-3600"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A physics-informed neural network for creep life prediction of austenitic stainless steels in air and liquid sodium\",\"authors\":\"Huian Mei, Lingfeng Pan, Cheng Gong, Xiaotao Zheng\",\"doi\":\"10.1111/ffe.14395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Creep life prediction of component materials exposed to air and liquid sodium environments is critical to ensure the safe operation and structural integrity of a sodium-cooled fast reactor. In this paper, a method for predicting the creep life of a wide range of austenitic stainless steels in air and liquid sodium was proposed based on a physics-informed neural network. Based on the established datasets for sodium corrosion rates and creep life in air and liquid sodium, the predictive performance of physical equations, conventional machine learning models, and the proposed model were assessed. Subsequently, a data-driven creep life assessment framework was established, providing insight into the engineering application of machine learning methods in high-temperature structure assessment. The results show that the creep fracture of austenitic stainless steel is accelerated by liquid sodium corrosion. The proposed physics-informed neural network exhibits enhanced suitability and accuracy for predicting the sodium corrosion rate and creep life than physical equations and conventional machine learning methods.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 10\",\"pages\":\"3584-3600\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14395\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14395","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A physics-informed neural network for creep life prediction of austenitic stainless steels in air and liquid sodium
Creep life prediction of component materials exposed to air and liquid sodium environments is critical to ensure the safe operation and structural integrity of a sodium-cooled fast reactor. In this paper, a method for predicting the creep life of a wide range of austenitic stainless steels in air and liquid sodium was proposed based on a physics-informed neural network. Based on the established datasets for sodium corrosion rates and creep life in air and liquid sodium, the predictive performance of physical equations, conventional machine learning models, and the proposed model were assessed. Subsequently, a data-driven creep life assessment framework was established, providing insight into the engineering application of machine learning methods in high-temperature structure assessment. The results show that the creep fracture of austenitic stainless steel is accelerated by liquid sodium corrosion. The proposed physics-informed neural network exhibits enhanced suitability and accuracy for predicting the sodium corrosion rate and creep life than physical equations and conventional machine learning methods.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.