MANTA:符合 NASEM 标准的负三角形聚变试验装置

Grant Rutherford, H. S. Wilson, A. Saltzman, D. Arnold, J. Ball, S. Benjamin, R. Bielajew, Nikolai de Boucaud, Miguel Calvo Carrera, R. Chandra, H. Choudhury, C. Cummings, L. Corsaro, N. DaSilva, R. Diab, A. Devitre, S. Ferry, S. Frank, C. Hansen, J. Jerkins, Jamal D Johnson, Priyansh Lunia, Jacob van de Lindt, S. Mackie, A. Maris, N. Mandell, Marco Andres Miller, Theodore Mouratidis, A. O. Nelson, M. Pharr, E. Peterson, Pablo Rodriguez-Fernandez, Stefano Segatin, M. Tobin, A. Velberg, Allen Wang, M. Wigram, J. Witham, C. Paz-Soldan, D. G. Whyte
{"title":"MANTA:符合 NASEM 标准的负三角形聚变试验装置","authors":"Grant Rutherford, H. S. Wilson, A. Saltzman, D. Arnold, J. Ball, S. Benjamin, R. Bielajew, Nikolai de Boucaud, Miguel Calvo Carrera, R. Chandra, H. Choudhury, C. Cummings, L. Corsaro, N. DaSilva, R. Diab, A. Devitre, S. Ferry, S. Frank, C. Hansen, J. Jerkins, Jamal D Johnson, Priyansh Lunia, Jacob van de Lindt, S. Mackie, A. Maris, N. Mandell, Marco Andres Miller, Theodore Mouratidis, A. O. Nelson, M. Pharr, E. Peterson, Pablo Rodriguez-Fernandez, Stefano Segatin, M. Tobin, A. Velberg, Allen Wang, M. Wigram, J. Witham, C. Paz-Soldan, D. G. Whyte","doi":"10.1088/1361-6587/ad6708","DOIUrl":null,"url":null,"abstract":"\n The MANTA (Modular Adjustable Negative Triangularity ARC-class) design study investigated how negative-triangularity (NT) may be leveraged in a compact, fusion pilot plant (FPP) to take a \"power-handling first\" approach. The result is a pulsed, radiative, ELM-free tokamak that satisfies and exceeds the FPP requirements described in the 2021 National Academies of Sciences, Engineering, and Medicine report \"Bringing Fusion to the U.S. Grid\"[1]. A self-consistent integrated modeling workflow predicts a fusion power of 450 MW and a plasma gain of 11.5 with only 23.5 MW of power to the scrape-off layer (SOL). This low PSOL together with impurity seeding and high density at the separatrix results in a peak heat flux of just 2.8 MW/m2. MANTA's high aspect ratio provides space for a large central solenoid (CS), resulting in ~15 minute inductive pulses. In spite of the high B fields on the CS and the other REBCO-based magnets, the electromagnetic stresses remain below structural and critical current density limits. Iterative optimization of neutron shielding and tritium breeding blanket yield tritium self-sufficiency with a breeding ratio of 1.15, a blanket power multiplication factor of 1.11, toroidal field coil lifetimes of 3100 ± 400 MW-yr, and poloidal field coil lifetimes of at least 890 ± 40 MW-yr. Following balance of plant modeling, MANTA is projected to generate 90 MW of net electricity at an engineering fusion gain of ~2.4. Systems-level economic analysis estimates an overnight cost of US$3.4 billion, meeting the NASEM FPP requirement that this first-of-a-kind be less than US$5 billion. The toroidal field coil cost and replacement time are the most critical upfront and lifetime cost drivers, respectively.","PeriodicalId":510623,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MANTA: A Negative-Triangularity NASEM-compliant fusion pilot plant\",\"authors\":\"Grant Rutherford, H. S. Wilson, A. Saltzman, D. Arnold, J. Ball, S. Benjamin, R. Bielajew, Nikolai de Boucaud, Miguel Calvo Carrera, R. Chandra, H. Choudhury, C. Cummings, L. Corsaro, N. DaSilva, R. Diab, A. Devitre, S. Ferry, S. Frank, C. Hansen, J. Jerkins, Jamal D Johnson, Priyansh Lunia, Jacob van de Lindt, S. Mackie, A. Maris, N. Mandell, Marco Andres Miller, Theodore Mouratidis, A. O. Nelson, M. Pharr, E. Peterson, Pablo Rodriguez-Fernandez, Stefano Segatin, M. Tobin, A. Velberg, Allen Wang, M. Wigram, J. Witham, C. Paz-Soldan, D. G. Whyte\",\"doi\":\"10.1088/1361-6587/ad6708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The MANTA (Modular Adjustable Negative Triangularity ARC-class) design study investigated how negative-triangularity (NT) may be leveraged in a compact, fusion pilot plant (FPP) to take a \\\"power-handling first\\\" approach. The result is a pulsed, radiative, ELM-free tokamak that satisfies and exceeds the FPP requirements described in the 2021 National Academies of Sciences, Engineering, and Medicine report \\\"Bringing Fusion to the U.S. Grid\\\"[1]. A self-consistent integrated modeling workflow predicts a fusion power of 450 MW and a plasma gain of 11.5 with only 23.5 MW of power to the scrape-off layer (SOL). This low PSOL together with impurity seeding and high density at the separatrix results in a peak heat flux of just 2.8 MW/m2. MANTA's high aspect ratio provides space for a large central solenoid (CS), resulting in ~15 minute inductive pulses. In spite of the high B fields on the CS and the other REBCO-based magnets, the electromagnetic stresses remain below structural and critical current density limits. Iterative optimization of neutron shielding and tritium breeding blanket yield tritium self-sufficiency with a breeding ratio of 1.15, a blanket power multiplication factor of 1.11, toroidal field coil lifetimes of 3100 ± 400 MW-yr, and poloidal field coil lifetimes of at least 890 ± 40 MW-yr. Following balance of plant modeling, MANTA is projected to generate 90 MW of net electricity at an engineering fusion gain of ~2.4. Systems-level economic analysis estimates an overnight cost of US$3.4 billion, meeting the NASEM FPP requirement that this first-of-a-kind be less than US$5 billion. The toroidal field coil cost and replacement time are the most critical upfront and lifetime cost drivers, respectively.\",\"PeriodicalId\":510623,\"journal\":{\"name\":\"Plasma Physics and Controlled Fusion\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics and Controlled Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6587/ad6708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad6708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

MANTA(模块化可调负三角形 ARC-class)设计研究调查了如何在紧凑型核聚变试验装置(FPP)中利用负三角形(NT),采取 "功率处理优先 "的方法。研究结果是一个脉冲、无辐射、无 ELM 的托卡马克,满足并超过了美国国家科学、工程和医学研究院 2021 年报告 "将核聚变带入美国电网"[1] 中描述的 FPP 要求。根据自洽集成建模工作流程预测,聚变功率为 450 兆瓦,等离子体增益为 11.5,而刮离层(SOL)的功率仅为 23.5 兆瓦。这种低 PSOL 加上杂质播种和分离矩阵的高密度,使得峰值热通量仅为 2.8 MW/m2。MANTA 的高纵横比为大型中央螺线管 (CS) 提供了空间,从而产生了约 15 分钟的电感脉冲。尽管在 CS 和其他基于 REBCO 的磁体上存在高 B 场,但电磁应力仍低于结构和临界电流密度极限。通过对中子屏蔽和氚孕育毯的迭代优化,氚实现了自给自足,孕育比为 1.15,毯功率倍增因子为 1.11,环形场线圈寿命为 3100 ± 400 兆瓦/年,极性场线圈寿命至少为 890 ± 40 兆瓦/年。系统级经济分析估计,一夜之间的成本为 34 亿美元,符合 NASEM FPP 的要求,即首台设备的成本应低于 50 亿美元。环形磁场线圈成本和更换时间分别是最关键的前期成本和寿命成本驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MANTA: A Negative-Triangularity NASEM-compliant fusion pilot plant
The MANTA (Modular Adjustable Negative Triangularity ARC-class) design study investigated how negative-triangularity (NT) may be leveraged in a compact, fusion pilot plant (FPP) to take a "power-handling first" approach. The result is a pulsed, radiative, ELM-free tokamak that satisfies and exceeds the FPP requirements described in the 2021 National Academies of Sciences, Engineering, and Medicine report "Bringing Fusion to the U.S. Grid"[1]. A self-consistent integrated modeling workflow predicts a fusion power of 450 MW and a plasma gain of 11.5 with only 23.5 MW of power to the scrape-off layer (SOL). This low PSOL together with impurity seeding and high density at the separatrix results in a peak heat flux of just 2.8 MW/m2. MANTA's high aspect ratio provides space for a large central solenoid (CS), resulting in ~15 minute inductive pulses. In spite of the high B fields on the CS and the other REBCO-based magnets, the electromagnetic stresses remain below structural and critical current density limits. Iterative optimization of neutron shielding and tritium breeding blanket yield tritium self-sufficiency with a breeding ratio of 1.15, a blanket power multiplication factor of 1.11, toroidal field coil lifetimes of 3100 ± 400 MW-yr, and poloidal field coil lifetimes of at least 890 ± 40 MW-yr. Following balance of plant modeling, MANTA is projected to generate 90 MW of net electricity at an engineering fusion gain of ~2.4. Systems-level economic analysis estimates an overnight cost of US$3.4 billion, meeting the NASEM FPP requirement that this first-of-a-kind be less than US$5 billion. The toroidal field coil cost and replacement time are the most critical upfront and lifetime cost drivers, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信