{"title":"基于神经直方图的空间粗糙度变化表面闪光渲染","authors":"I. Shah, L. E. Gamboa, A. Gruson, P. J. Narayanan","doi":"10.1111/cgf.15157","DOIUrl":null,"url":null,"abstract":"<p>The complex, glinty appearance of detailed normal-mapped surfaces at different scales requires expensive per-pixel Normal Distribution Function computations. Moreover, large light sources further compound this integration and increase the noise in the Monte Carlo renderer. Specialized rendering techniques that explicitly express the underlying normal distribution have been developed to improve performance for glinty surfaces controlled by a fixed material roughness. We present a new method that supports spatially varying roughness based on a neural histogram that computes per-pixel NDFs with arbitrary positions and sizes. Our representation is both memory and compute efficient. Additionally, we fully integrate direct illumination for all light directions in constant time. Our approach decouples roughness and normal distribution, allowing the live editing of the spatially varying roughness of complex normal-mapped objects. We demonstrate that our approach improves on previous work by achieving smaller footprints while offering GPU-friendly computation and compact representation.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Histogram-Based Glint Rendering of Surfaces With Spatially Varying Roughness\",\"authors\":\"I. Shah, L. E. Gamboa, A. Gruson, P. J. Narayanan\",\"doi\":\"10.1111/cgf.15157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The complex, glinty appearance of detailed normal-mapped surfaces at different scales requires expensive per-pixel Normal Distribution Function computations. Moreover, large light sources further compound this integration and increase the noise in the Monte Carlo renderer. Specialized rendering techniques that explicitly express the underlying normal distribution have been developed to improve performance for glinty surfaces controlled by a fixed material roughness. We present a new method that supports spatially varying roughness based on a neural histogram that computes per-pixel NDFs with arbitrary positions and sizes. Our representation is both memory and compute efficient. Additionally, we fully integrate direct illumination for all light directions in constant time. Our approach decouples roughness and normal distribution, allowing the live editing of the spatially varying roughness of complex normal-mapped objects. We demonstrate that our approach improves on previous work by achieving smaller footprints while offering GPU-friendly computation and compact representation.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15157\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15157","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Neural Histogram-Based Glint Rendering of Surfaces With Spatially Varying Roughness
The complex, glinty appearance of detailed normal-mapped surfaces at different scales requires expensive per-pixel Normal Distribution Function computations. Moreover, large light sources further compound this integration and increase the noise in the Monte Carlo renderer. Specialized rendering techniques that explicitly express the underlying normal distribution have been developed to improve performance for glinty surfaces controlled by a fixed material roughness. We present a new method that supports spatially varying roughness based on a neural histogram that computes per-pixel NDFs with arbitrary positions and sizes. Our representation is both memory and compute efficient. Additionally, we fully integrate direct illumination for all light directions in constant time. Our approach decouples roughness and normal distribution, allowing the live editing of the spatially varying roughness of complex normal-mapped objects. We demonstrate that our approach improves on previous work by achieving smaller footprints while offering GPU-friendly computation and compact representation.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.