Louis Bellmann, Alexander Johannes Wiederhold, Leona Trübe, Raphael Twerenbold, Frank Ückert, Karl Gottfried
{"title":"引入属性关联图以促进医学数据探索:利用流行病学研究数据进行开发和评估。","authors":"Louis Bellmann, Alexander Johannes Wiederhold, Leona Trübe, Raphael Twerenbold, Frank Ückert, Karl Gottfried","doi":"10.2196/49865","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Interpretability and intuitive visualization facilitate medical knowledge generation through big data. In addition, robustness to high-dimensional and missing data is a requirement for statistical approaches in the medical domain. A method tailored to the needs of physicians must meet all the abovementioned criteria.</p><p><strong>Objective: </strong>This study aims to develop an accessible tool for visual data exploration without the need for programming knowledge, adjusting complex parameterizations, or handling missing data. We sought to use statistical analysis using the setting of disease and control cohorts familiar to clinical researchers. We aimed to guide the user by identifying and highlighting data patterns associated with disease and reveal relations between attributes within the data set.</p><p><strong>Methods: </strong>We introduce the attribute association graph, a novel graph structure designed for visual data exploration using robust statistical metrics. The nodes capture frequencies of participant attributes in disease and control cohorts as well as deviations between groups. The edges represent conditional relations between attributes. The graph is visualized using the Neo4j (Neo4j, Inc) data platform and can be interactively explored without the need for technical knowledge. Nodes with high deviations between cohorts and edges of noticeable conditional relationship are highlighted to guide the user during the exploration. The graph is accompanied by a dashboard visualizing variable distributions. For evaluation, we applied the graph and dashboard to the Hamburg City Health Study data set, a large cohort study conducted in the city of Hamburg, Germany. All data structures can be accessed freely by researchers, physicians, and patients. In addition, we developed a user test conducted with physicians incorporating the System Usability Scale, individual questions, and user tasks.</p><p><strong>Results: </strong>We evaluated the attribute association graph and dashboard through an exemplary data analysis of participants with a general cardiovascular disease in the Hamburg City Health Study data set. All results extracted from the graph structure and dashboard are in accordance with findings from the literature, except for unusually low cholesterol levels in participants with cardiovascular disease, which could be induced by medication. In addition, 95% CIs of Pearson correlation coefficients were calculated for all associations identified during the data analysis, confirming the results. In addition, a user test with 10 physicians assessing the usability of the proposed methods was conducted. A System Usability Scale score of 70.5% and average successful task completion of 81.4% were reported.</p><p><strong>Conclusions: </strong>The proposed attribute association graph and dashboard enable intuitive visual data exploration. They are robust to high-dimensional as well as missing data and require no parameterization. The usability for clinicians was confirmed via a user test, and the validity of the statistical results was confirmed by associations known from literature and standard statistical inference.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e49865"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306949/pdf/","citationCount":"0","resultStr":"{\"title\":\"Introducing Attribute Association Graphs to Facilitate Medical Data Exploration: Development and Evaluation Using Epidemiological Study Data.\",\"authors\":\"Louis Bellmann, Alexander Johannes Wiederhold, Leona Trübe, Raphael Twerenbold, Frank Ückert, Karl Gottfried\",\"doi\":\"10.2196/49865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Interpretability and intuitive visualization facilitate medical knowledge generation through big data. In addition, robustness to high-dimensional and missing data is a requirement for statistical approaches in the medical domain. A method tailored to the needs of physicians must meet all the abovementioned criteria.</p><p><strong>Objective: </strong>This study aims to develop an accessible tool for visual data exploration without the need for programming knowledge, adjusting complex parameterizations, or handling missing data. We sought to use statistical analysis using the setting of disease and control cohorts familiar to clinical researchers. We aimed to guide the user by identifying and highlighting data patterns associated with disease and reveal relations between attributes within the data set.</p><p><strong>Methods: </strong>We introduce the attribute association graph, a novel graph structure designed for visual data exploration using robust statistical metrics. The nodes capture frequencies of participant attributes in disease and control cohorts as well as deviations between groups. The edges represent conditional relations between attributes. The graph is visualized using the Neo4j (Neo4j, Inc) data platform and can be interactively explored without the need for technical knowledge. Nodes with high deviations between cohorts and edges of noticeable conditional relationship are highlighted to guide the user during the exploration. The graph is accompanied by a dashboard visualizing variable distributions. For evaluation, we applied the graph and dashboard to the Hamburg City Health Study data set, a large cohort study conducted in the city of Hamburg, Germany. All data structures can be accessed freely by researchers, physicians, and patients. In addition, we developed a user test conducted with physicians incorporating the System Usability Scale, individual questions, and user tasks.</p><p><strong>Results: </strong>We evaluated the attribute association graph and dashboard through an exemplary data analysis of participants with a general cardiovascular disease in the Hamburg City Health Study data set. All results extracted from the graph structure and dashboard are in accordance with findings from the literature, except for unusually low cholesterol levels in participants with cardiovascular disease, which could be induced by medication. In addition, 95% CIs of Pearson correlation coefficients were calculated for all associations identified during the data analysis, confirming the results. In addition, a user test with 10 physicians assessing the usability of the proposed methods was conducted. A System Usability Scale score of 70.5% and average successful task completion of 81.4% were reported.</p><p><strong>Conclusions: </strong>The proposed attribute association graph and dashboard enable intuitive visual data exploration. They are robust to high-dimensional as well as missing data and require no parameterization. The usability for clinicians was confirmed via a user test, and the validity of the statistical results was confirmed by associations known from literature and standard statistical inference.</p>\",\"PeriodicalId\":56334,\"journal\":{\"name\":\"JMIR Medical Informatics\",\"volume\":\"12 \",\"pages\":\"e49865\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306949/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/49865\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/49865","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Introducing Attribute Association Graphs to Facilitate Medical Data Exploration: Development and Evaluation Using Epidemiological Study Data.
Background: Interpretability and intuitive visualization facilitate medical knowledge generation through big data. In addition, robustness to high-dimensional and missing data is a requirement for statistical approaches in the medical domain. A method tailored to the needs of physicians must meet all the abovementioned criteria.
Objective: This study aims to develop an accessible tool for visual data exploration without the need for programming knowledge, adjusting complex parameterizations, or handling missing data. We sought to use statistical analysis using the setting of disease and control cohorts familiar to clinical researchers. We aimed to guide the user by identifying and highlighting data patterns associated with disease and reveal relations between attributes within the data set.
Methods: We introduce the attribute association graph, a novel graph structure designed for visual data exploration using robust statistical metrics. The nodes capture frequencies of participant attributes in disease and control cohorts as well as deviations between groups. The edges represent conditional relations between attributes. The graph is visualized using the Neo4j (Neo4j, Inc) data platform and can be interactively explored without the need for technical knowledge. Nodes with high deviations between cohorts and edges of noticeable conditional relationship are highlighted to guide the user during the exploration. The graph is accompanied by a dashboard visualizing variable distributions. For evaluation, we applied the graph and dashboard to the Hamburg City Health Study data set, a large cohort study conducted in the city of Hamburg, Germany. All data structures can be accessed freely by researchers, physicians, and patients. In addition, we developed a user test conducted with physicians incorporating the System Usability Scale, individual questions, and user tasks.
Results: We evaluated the attribute association graph and dashboard through an exemplary data analysis of participants with a general cardiovascular disease in the Hamburg City Health Study data set. All results extracted from the graph structure and dashboard are in accordance with findings from the literature, except for unusually low cholesterol levels in participants with cardiovascular disease, which could be induced by medication. In addition, 95% CIs of Pearson correlation coefficients were calculated for all associations identified during the data analysis, confirming the results. In addition, a user test with 10 physicians assessing the usability of the proposed methods was conducted. A System Usability Scale score of 70.5% and average successful task completion of 81.4% were reported.
Conclusions: The proposed attribute association graph and dashboard enable intuitive visual data exploration. They are robust to high-dimensional as well as missing data and require no parameterization. The usability for clinicians was confirmed via a user test, and the validity of the statistical results was confirmed by associations known from literature and standard statistical inference.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.