Shaorun Lin , Chengze Li , Mackenzie Conkling , Xinyan Huang , Stephen L. Quarles , Michael J. Gollner
{"title":"在风力作用下,木质地膜床暴露在火苗下,燃烧并过渡到燃烧","authors":"Shaorun Lin , Chengze Li , Mackenzie Conkling , Xinyan Huang , Stephen L. Quarles , Michael J. Gollner","doi":"10.1016/j.firesaf.2024.104226","DOIUrl":null,"url":null,"abstract":"<div><p>Spotting ignition by firebrands is a significant fire spread pathway at the wildland-urban interface (WUI), where mulch products are commonly used as landscaping materials. Mulch is typically organic in nature, thus it may be easily ignited into a smoldering mode by firebrands and subsequently transition to flaming, leading to direct flame contact and radiant heat exposure to siding materials of adjacent structures. This work quantified the thresholds of smoldering ignition of four common types of commercially available mulch (black mulch (BM), forest floor (FF), redwood (RW), and fir bark (FB)) exposed to heating by smoldering firebrand piles, and their propensity for smoldering-to-flaming transition under external winds (up to 1.4 m/s). We found that there was a minimum mass of firebrand pile to achieve smoldering ignition of mulch (e.g., ∼0.1 g for FF). Beyond this minimum mass, the required wind speed to trigger smoldering ignition generally decreased as the mass of the firebrand pile increased, agreeing well with theoretical analysis. After smoldering ignition, smoldering-to-flaming transition could be observed when the wind speed exceeded a critical value (e.g., ∼1 m/s for FF), which was not affected by the initial spotting process. To achieve smoldering-to-flaming transition, the glowing mulch had to reach a critical temperature of around 850 °C. Mulch samples with larger particle sizes were more likely to smolder and transition to flaming, due to increased oxygen supply through larger inter-particle pores and channels and better firebrand accumulation due to a more crevice-like geometry on the fuel surface. This work advances the fundamental understanding of the ignition and burning behavior of landscaping mulches, and thus contributes to the prevention of extreme WUI fire events.</p></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"148 ","pages":"Article 104226"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0379711224001395/pdfft?md5=cd0426b57b88d06163a740938140e956&pid=1-s2.0-S0379711224001395-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Smoldering ignition and transition to flaming in wooden mulch beds exposed to firebrands under wind\",\"authors\":\"Shaorun Lin , Chengze Li , Mackenzie Conkling , Xinyan Huang , Stephen L. Quarles , Michael J. Gollner\",\"doi\":\"10.1016/j.firesaf.2024.104226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spotting ignition by firebrands is a significant fire spread pathway at the wildland-urban interface (WUI), where mulch products are commonly used as landscaping materials. Mulch is typically organic in nature, thus it may be easily ignited into a smoldering mode by firebrands and subsequently transition to flaming, leading to direct flame contact and radiant heat exposure to siding materials of adjacent structures. This work quantified the thresholds of smoldering ignition of four common types of commercially available mulch (black mulch (BM), forest floor (FF), redwood (RW), and fir bark (FB)) exposed to heating by smoldering firebrand piles, and their propensity for smoldering-to-flaming transition under external winds (up to 1.4 m/s). We found that there was a minimum mass of firebrand pile to achieve smoldering ignition of mulch (e.g., ∼0.1 g for FF). Beyond this minimum mass, the required wind speed to trigger smoldering ignition generally decreased as the mass of the firebrand pile increased, agreeing well with theoretical analysis. After smoldering ignition, smoldering-to-flaming transition could be observed when the wind speed exceeded a critical value (e.g., ∼1 m/s for FF), which was not affected by the initial spotting process. To achieve smoldering-to-flaming transition, the glowing mulch had to reach a critical temperature of around 850 °C. Mulch samples with larger particle sizes were more likely to smolder and transition to flaming, due to increased oxygen supply through larger inter-particle pores and channels and better firebrand accumulation due to a more crevice-like geometry on the fuel surface. This work advances the fundamental understanding of the ignition and burning behavior of landscaping mulches, and thus contributes to the prevention of extreme WUI fire events.</p></div>\",\"PeriodicalId\":50445,\"journal\":{\"name\":\"Fire Safety Journal\",\"volume\":\"148 \",\"pages\":\"Article 104226\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0379711224001395/pdfft?md5=cd0426b57b88d06163a740938140e956&pid=1-s2.0-S0379711224001395-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379711224001395\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711224001395","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Smoldering ignition and transition to flaming in wooden mulch beds exposed to firebrands under wind
Spotting ignition by firebrands is a significant fire spread pathway at the wildland-urban interface (WUI), where mulch products are commonly used as landscaping materials. Mulch is typically organic in nature, thus it may be easily ignited into a smoldering mode by firebrands and subsequently transition to flaming, leading to direct flame contact and radiant heat exposure to siding materials of adjacent structures. This work quantified the thresholds of smoldering ignition of four common types of commercially available mulch (black mulch (BM), forest floor (FF), redwood (RW), and fir bark (FB)) exposed to heating by smoldering firebrand piles, and their propensity for smoldering-to-flaming transition under external winds (up to 1.4 m/s). We found that there was a minimum mass of firebrand pile to achieve smoldering ignition of mulch (e.g., ∼0.1 g for FF). Beyond this minimum mass, the required wind speed to trigger smoldering ignition generally decreased as the mass of the firebrand pile increased, agreeing well with theoretical analysis. After smoldering ignition, smoldering-to-flaming transition could be observed when the wind speed exceeded a critical value (e.g., ∼1 m/s for FF), which was not affected by the initial spotting process. To achieve smoldering-to-flaming transition, the glowing mulch had to reach a critical temperature of around 850 °C. Mulch samples with larger particle sizes were more likely to smolder and transition to flaming, due to increased oxygen supply through larger inter-particle pores and channels and better firebrand accumulation due to a more crevice-like geometry on the fuel surface. This work advances the fundamental understanding of the ignition and burning behavior of landscaping mulches, and thus contributes to the prevention of extreme WUI fire events.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.