{"title":"带有乘客路线的铁路线路规划:直接服务网络表示法和两阶段解决方法","authors":"Zhiyuan Yao, Lei Nie, Huiling Fu","doi":"10.1016/j.trb.2024.102989","DOIUrl":null,"url":null,"abstract":"<div><p>The railway line planning problem (LPP) plays a crucial role in determining the quality of services provided to passengers, as well as operation costs borne by railway companies. In periodic railway LPPs, it is common to consider passenger transfers between train lines to realize a general passenger travel cost setting in the railway system. While detecting passenger transfers requires incorporating passenger routing into mathematical formulations, thereby significantly complicating the problem. Studies on transfer-included LPPs are generally based on the Change&Go network that is constructed based on a pre-given line pool, which however is usually non-exhaustive due to computational intractability. To efficiently include passenger transfers in large-scale railway LPPs, this paper proposes a novel extended direct-service network representation of LPP, where lines are dynamically generated within the optimization process, and part of passenger transfers between lines can be precisely captured without the need for explicit modeling of passengers’ distribution on specific lines. A two-phase solution approach based on the representation is designed. The first phase formulates LPP with part of transfers as a path-based service network design model, solved using a branch-price-and-cut algorithm. The second phase conducts a neighborhood search around the first-phase solution to seek better ones when considering all passenger transfers. Numerical results showcase the good performance of the two-phase solution approach. It delivers optimal solutions in 18 out of 24 test instances for a small case and achieves optimality gaps within 2.85% across all small instances. The large case study of China’s Shandong high-speed railway network whose line pool size reaches millions demonstrates the scalability of the approach and its advantage over the traditional Change&Go method with partial line pools and an exact model developed in the paper.</p></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"186 ","pages":"Article 102989"},"PeriodicalIF":5.8000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Railway line planning with passenger routing: Direct-service network representations and a two-phase solution approach\",\"authors\":\"Zhiyuan Yao, Lei Nie, Huiling Fu\",\"doi\":\"10.1016/j.trb.2024.102989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The railway line planning problem (LPP) plays a crucial role in determining the quality of services provided to passengers, as well as operation costs borne by railway companies. In periodic railway LPPs, it is common to consider passenger transfers between train lines to realize a general passenger travel cost setting in the railway system. While detecting passenger transfers requires incorporating passenger routing into mathematical formulations, thereby significantly complicating the problem. Studies on transfer-included LPPs are generally based on the Change&Go network that is constructed based on a pre-given line pool, which however is usually non-exhaustive due to computational intractability. To efficiently include passenger transfers in large-scale railway LPPs, this paper proposes a novel extended direct-service network representation of LPP, where lines are dynamically generated within the optimization process, and part of passenger transfers between lines can be precisely captured without the need for explicit modeling of passengers’ distribution on specific lines. A two-phase solution approach based on the representation is designed. The first phase formulates LPP with part of transfers as a path-based service network design model, solved using a branch-price-and-cut algorithm. The second phase conducts a neighborhood search around the first-phase solution to seek better ones when considering all passenger transfers. Numerical results showcase the good performance of the two-phase solution approach. It delivers optimal solutions in 18 out of 24 test instances for a small case and achieves optimality gaps within 2.85% across all small instances. The large case study of China’s Shandong high-speed railway network whose line pool size reaches millions demonstrates the scalability of the approach and its advantage over the traditional Change&Go method with partial line pools and an exact model developed in the paper.</p></div>\",\"PeriodicalId\":54418,\"journal\":{\"name\":\"Transportation Research Part B-Methodological\",\"volume\":\"186 \",\"pages\":\"Article 102989\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part B-Methodological\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0191261524001139\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261524001139","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Railway line planning with passenger routing: Direct-service network representations and a two-phase solution approach
The railway line planning problem (LPP) plays a crucial role in determining the quality of services provided to passengers, as well as operation costs borne by railway companies. In periodic railway LPPs, it is common to consider passenger transfers between train lines to realize a general passenger travel cost setting in the railway system. While detecting passenger transfers requires incorporating passenger routing into mathematical formulations, thereby significantly complicating the problem. Studies on transfer-included LPPs are generally based on the Change&Go network that is constructed based on a pre-given line pool, which however is usually non-exhaustive due to computational intractability. To efficiently include passenger transfers in large-scale railway LPPs, this paper proposes a novel extended direct-service network representation of LPP, where lines are dynamically generated within the optimization process, and part of passenger transfers between lines can be precisely captured without the need for explicit modeling of passengers’ distribution on specific lines. A two-phase solution approach based on the representation is designed. The first phase formulates LPP with part of transfers as a path-based service network design model, solved using a branch-price-and-cut algorithm. The second phase conducts a neighborhood search around the first-phase solution to seek better ones when considering all passenger transfers. Numerical results showcase the good performance of the two-phase solution approach. It delivers optimal solutions in 18 out of 24 test instances for a small case and achieves optimality gaps within 2.85% across all small instances. The large case study of China’s Shandong high-speed railway network whose line pool size reaches millions demonstrates the scalability of the approach and its advantage over the traditional Change&Go method with partial line pools and an exact model developed in the paper.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.