Seungjun Choo, Jungsoo Lee, Bengisu Şişik, Sung-Jin Jung, Keonkuk Kim, Seong Eun Yang, Seungki Jo, Changhyeon Nam, Sangjoon Ahn, Ho Seong Lee, Han Gi Chae, Seong Keun Kim, Saniya LeBlanc, Jae Sung Son
{"title":"用于提高发电量的 Cu2Se 基热电材料的几何设计","authors":"Seungjun Choo, Jungsoo Lee, Bengisu Şişik, Sung-Jin Jung, Keonkuk Kim, Seong Eun Yang, Seungki Jo, Changhyeon Nam, Sangjoon Ahn, Ho Seong Lee, Han Gi Chae, Seong Keun Kim, Saniya LeBlanc, Jae Sung Son","doi":"10.1038/s41560-024-01589-5","DOIUrl":null,"url":null,"abstract":"Waste heat, an abundant energy source generated by both industries and nature, has the potential to be harnessed into electricity via thermoelectric power generation. The performance of thermoelectric modules, typically composed of cuboid-shaped materials, depends on both the materials’ intrinsic properties and the temperature difference created. Despite significant advancements in the development of efficient materials, macroscopic thermal designs capable of accommodating larger temperature differences have been largely underexplored because of the challenges associated with processing bulk thermoelectric materials. Here we present the design strategy for Cu2Se thermoelectric materials for high-temperature power generation using a combination of finite element modelling and 3D printing. The macroscopic geometries and microscopic defects in Cu2Se materials are precisely engineered by optimizing the 3D printing and post-treatment processes, leading to notable enhancements in the material efficiency and temperature difference across legs, where the hourglass geometry exhibits maximized output powers and efficiencies. The proposed approach paves the way for designing efficient thermoelectric power generators. Choo, Lee et al. computationally and experimentally investigate how the thermal resistance and surface cooling of thermoelectric legs with different geometries impact the power output of Cu2Se thermoelectric materials.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 9","pages":"1105-1116"},"PeriodicalIF":49.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric design of Cu2Se-based thermoelectric materials for enhancing power generation\",\"authors\":\"Seungjun Choo, Jungsoo Lee, Bengisu Şişik, Sung-Jin Jung, Keonkuk Kim, Seong Eun Yang, Seungki Jo, Changhyeon Nam, Sangjoon Ahn, Ho Seong Lee, Han Gi Chae, Seong Keun Kim, Saniya LeBlanc, Jae Sung Son\",\"doi\":\"10.1038/s41560-024-01589-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waste heat, an abundant energy source generated by both industries and nature, has the potential to be harnessed into electricity via thermoelectric power generation. The performance of thermoelectric modules, typically composed of cuboid-shaped materials, depends on both the materials’ intrinsic properties and the temperature difference created. Despite significant advancements in the development of efficient materials, macroscopic thermal designs capable of accommodating larger temperature differences have been largely underexplored because of the challenges associated with processing bulk thermoelectric materials. Here we present the design strategy for Cu2Se thermoelectric materials for high-temperature power generation using a combination of finite element modelling and 3D printing. The macroscopic geometries and microscopic defects in Cu2Se materials are precisely engineered by optimizing the 3D printing and post-treatment processes, leading to notable enhancements in the material efficiency and temperature difference across legs, where the hourglass geometry exhibits maximized output powers and efficiencies. The proposed approach paves the way for designing efficient thermoelectric power generators. Choo, Lee et al. computationally and experimentally investigate how the thermal resistance and surface cooling of thermoelectric legs with different geometries impact the power output of Cu2Se thermoelectric materials.\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":\"9 9\",\"pages\":\"1105-1116\"},\"PeriodicalIF\":49.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41560-024-01589-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01589-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Geometric design of Cu2Se-based thermoelectric materials for enhancing power generation
Waste heat, an abundant energy source generated by both industries and nature, has the potential to be harnessed into electricity via thermoelectric power generation. The performance of thermoelectric modules, typically composed of cuboid-shaped materials, depends on both the materials’ intrinsic properties and the temperature difference created. Despite significant advancements in the development of efficient materials, macroscopic thermal designs capable of accommodating larger temperature differences have been largely underexplored because of the challenges associated with processing bulk thermoelectric materials. Here we present the design strategy for Cu2Se thermoelectric materials for high-temperature power generation using a combination of finite element modelling and 3D printing. The macroscopic geometries and microscopic defects in Cu2Se materials are precisely engineered by optimizing the 3D printing and post-treatment processes, leading to notable enhancements in the material efficiency and temperature difference across legs, where the hourglass geometry exhibits maximized output powers and efficiencies. The proposed approach paves the way for designing efficient thermoelectric power generators. Choo, Lee et al. computationally and experimentally investigate how the thermal resistance and surface cooling of thermoelectric legs with different geometries impact the power output of Cu2Se thermoelectric materials.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.