Vítor de Morais Sermoud , André de Freitas Gonçalves , Amaro Gomes Barreto Jr. , Luís Fernando Mercier Franco , Frederico Wanderley Tavares , Marcelo Castier
{"title":"封闭流体的经典密度泛函理论:从入门到现代应用","authors":"Vítor de Morais Sermoud , André de Freitas Gonçalves , Amaro Gomes Barreto Jr. , Luís Fernando Mercier Franco , Frederico Wanderley Tavares , Marcelo Castier","doi":"10.1016/j.fluid.2024.114177","DOIUrl":null,"url":null,"abstract":"<div><p>The application of classical density functional theory (cDFT) to model confined fluids is an outstanding example of directly using fundamental scientific knowledge, such as Statistical Mechanics, to calculate both structural fluid information and macroscopic physical properties needed for process design. One of the goals of this work is to provide materials that allow the reader to become familiar with cDFT. To do that, we present the fundamentals of cDFT and provide sample computational codes that apply its concepts to simple cases. A second goal is to present some of the modern applications of cDFT and related techniques, such as the multicomponent potential theory of adsorption and the development of specialized equations of state for confined fluids, as well as to review publicly available cDFT computer libraries. Overall, there has been a remarkable number of successful applications, ranging from ideal gases confined in 1D geometries to fluids modeled by modern equations of state in 3D porous solids. At the same time, some challenges remain. For example, most implementations are based on grand-potential formulations, which are not always the most convenient for process design. Further, additional results of heat of adsorption predictions would be useful because of their importance in equipment design. Another intriguing alternative could be integrating information from quantum DFT software simulations as input for classical DFT simulations.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"586 ","pages":"Article 114177"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical density functional theory of confined fluids: From getting started to modern applications\",\"authors\":\"Vítor de Morais Sermoud , André de Freitas Gonçalves , Amaro Gomes Barreto Jr. , Luís Fernando Mercier Franco , Frederico Wanderley Tavares , Marcelo Castier\",\"doi\":\"10.1016/j.fluid.2024.114177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The application of classical density functional theory (cDFT) to model confined fluids is an outstanding example of directly using fundamental scientific knowledge, such as Statistical Mechanics, to calculate both structural fluid information and macroscopic physical properties needed for process design. One of the goals of this work is to provide materials that allow the reader to become familiar with cDFT. To do that, we present the fundamentals of cDFT and provide sample computational codes that apply its concepts to simple cases. A second goal is to present some of the modern applications of cDFT and related techniques, such as the multicomponent potential theory of adsorption and the development of specialized equations of state for confined fluids, as well as to review publicly available cDFT computer libraries. Overall, there has been a remarkable number of successful applications, ranging from ideal gases confined in 1D geometries to fluids modeled by modern equations of state in 3D porous solids. At the same time, some challenges remain. For example, most implementations are based on grand-potential formulations, which are not always the most convenient for process design. Further, additional results of heat of adsorption predictions would be useful because of their importance in equipment design. Another intriguing alternative could be integrating information from quantum DFT software simulations as input for classical DFT simulations.</p></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"586 \",\"pages\":\"Article 114177\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381224001535\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224001535","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Classical density functional theory of confined fluids: From getting started to modern applications
The application of classical density functional theory (cDFT) to model confined fluids is an outstanding example of directly using fundamental scientific knowledge, such as Statistical Mechanics, to calculate both structural fluid information and macroscopic physical properties needed for process design. One of the goals of this work is to provide materials that allow the reader to become familiar with cDFT. To do that, we present the fundamentals of cDFT and provide sample computational codes that apply its concepts to simple cases. A second goal is to present some of the modern applications of cDFT and related techniques, such as the multicomponent potential theory of adsorption and the development of specialized equations of state for confined fluids, as well as to review publicly available cDFT computer libraries. Overall, there has been a remarkable number of successful applications, ranging from ideal gases confined in 1D geometries to fluids modeled by modern equations of state in 3D porous solids. At the same time, some challenges remain. For example, most implementations are based on grand-potential formulations, which are not always the most convenient for process design. Further, additional results of heat of adsorption predictions would be useful because of their importance in equipment design. Another intriguing alternative could be integrating information from quantum DFT software simulations as input for classical DFT simulations.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.