网格图上的重排不等式

IF 0.8 3区 数学 Q2 MATHEMATICS
Shubham Gupta, Stefan Steinerberger
{"title":"网格图上的重排不等式","authors":"Shubham Gupta,&nbsp;Stefan Steinerberger","doi":"10.1112/blms.13122","DOIUrl":null,"url":null,"abstract":"<p>The Polya–Szegő inequality in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> states that, given a nonnegative function <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>→</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$f:\\mathbb {R}^{n} \\rightarrow \\mathbb {R}$</annotation>\n </semantics></math>, its spherically symmetric decreasing rearrangement <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>f</mi>\n <mo>∗</mo>\n </msup>\n <mo>:</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>→</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$f^*:\\mathbb {R}^{n} \\rightarrow \\mathbb {R}$</annotation>\n </semantics></math> is ‘smoother’ in the sense of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>∥</mo>\n <mo>∇</mo>\n </mrow>\n <msup>\n <mi>f</mi>\n <mo>∗</mo>\n </msup>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </msub>\n <mo>⩽</mo>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mo>∇</mo>\n <mi>f</mi>\n <mo>∥</mo>\n </mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </msub>\n </mrow>\n <annotation>$\\Vert \\nabla f^*\\Vert _{L^p} \\leqslant \\Vert \\nabla f\\Vert _{L^p}$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>p</mi>\n <mo>⩽</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\leqslant p \\leqslant \\infty$</annotation>\n </semantics></math>. We study analogues on the lattice grid graph <span></span><math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {Z}^2$</annotation>\n </semantics></math>. The spiral rearrangement is known to satisfy the Polya–Szegő inequality for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$p=1$</annotation>\n </semantics></math>, the Wang-Wang rearrangement satisfies it for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$p=\\infty$</annotation>\n </semantics></math> and no rearrangement can satisfy it for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$p=2$</annotation>\n </semantics></math>. We develop a robust approach to show that both these rearrangements satisfy the Polya–Szegő inequality up to a constant for all <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>p</mi>\n <mo>⩽</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\leqslant p \\leqslant \\infty$</annotation>\n </semantics></math>. In particular, the Wang-Wang rearrangement satisfies <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>∥</mo>\n <mo>∇</mo>\n </mrow>\n <msup>\n <mi>f</mi>\n <mo>∗</mo>\n </msup>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </msub>\n <mo>⩽</mo>\n <msup>\n <mn>2</mn>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mo>∇</mo>\n <mi>f</mi>\n <mo>∥</mo>\n </mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </msub>\n </mrow>\n <annotation>$\\Vert \\nabla f^*\\Vert _{L^p} \\leqslant 2^{1/p} \\Vert \\nabla f\\Vert _{L^p}$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>p</mi>\n <mo>⩽</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\leqslant p \\leqslant \\infty$</annotation>\n </semantics></math>. We also show the existence of (many) rearrangements on <span></span><math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {Z}^d$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>∥</mo>\n <mo>∇</mo>\n </mrow>\n <msup>\n <mi>f</mi>\n <mo>∗</mo>\n </msup>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </msub>\n <mo>⩽</mo>\n <msub>\n <mi>c</mi>\n <mi>d</mi>\n </msub>\n <mo>·</mo>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mo>∇</mo>\n <mi>f</mi>\n <mo>∥</mo>\n </mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </msub>\n </mrow>\n <annotation>$\\Vert \\nabla f^*\\Vert _{L^p} \\leqslant c_d \\cdot \\Vert \\nabla f\\Vert _{L^p}$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>p</mi>\n <mo>⩽</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\leqslant p \\leqslant \\infty$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3145-3163"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rearrangement inequalities on the lattice graph\",\"authors\":\"Shubham Gupta,&nbsp;Stefan Steinerberger\",\"doi\":\"10.1112/blms.13122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Polya–Szegő inequality in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math> states that, given a nonnegative function <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>:</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>→</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$f:\\\\mathbb {R}^{n} \\\\rightarrow \\\\mathbb {R}$</annotation>\\n </semantics></math>, its spherically symmetric decreasing rearrangement <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>f</mi>\\n <mo>∗</mo>\\n </msup>\\n <mo>:</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>→</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$f^*:\\\\mathbb {R}^{n} \\\\rightarrow \\\\mathbb {R}$</annotation>\\n </semantics></math> is ‘smoother’ in the sense of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>∥</mo>\\n <mo>∇</mo>\\n </mrow>\\n <msup>\\n <mi>f</mi>\\n <mo>∗</mo>\\n </msup>\\n <msub>\\n <mo>∥</mo>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n </msub>\\n <mo>⩽</mo>\\n <msub>\\n <mrow>\\n <mo>∥</mo>\\n <mo>∇</mo>\\n <mi>f</mi>\\n <mo>∥</mo>\\n </mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n </msub>\\n </mrow>\\n <annotation>$\\\\Vert \\\\nabla f^*\\\\Vert _{L^p} \\\\leqslant \\\\Vert \\\\nabla f\\\\Vert _{L^p}$</annotation>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>⩽</mo>\\n <mi>p</mi>\\n <mo>⩽</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1 \\\\leqslant p \\\\leqslant \\\\infty$</annotation>\\n </semantics></math>. We study analogues on the lattice grid graph <span></span><math>\\n <semantics>\\n <msup>\\n <mi>Z</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$\\\\mathbb {Z}^2$</annotation>\\n </semantics></math>. The spiral rearrangement is known to satisfy the Polya–Szegő inequality for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$p=1$</annotation>\\n </semantics></math>, the Wang-Wang rearrangement satisfies it for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>=</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$p=\\\\infty$</annotation>\\n </semantics></math> and no rearrangement can satisfy it for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$p=2$</annotation>\\n </semantics></math>. We develop a robust approach to show that both these rearrangements satisfy the Polya–Szegő inequality up to a constant for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>⩽</mo>\\n <mi>p</mi>\\n <mo>⩽</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1 \\\\leqslant p \\\\leqslant \\\\infty$</annotation>\\n </semantics></math>. In particular, the Wang-Wang rearrangement satisfies <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>∥</mo>\\n <mo>∇</mo>\\n </mrow>\\n <msup>\\n <mi>f</mi>\\n <mo>∗</mo>\\n </msup>\\n <msub>\\n <mo>∥</mo>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n </msub>\\n <mo>⩽</mo>\\n <msup>\\n <mn>2</mn>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <msub>\\n <mrow>\\n <mo>∥</mo>\\n <mo>∇</mo>\\n <mi>f</mi>\\n <mo>∥</mo>\\n </mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n </msub>\\n </mrow>\\n <annotation>$\\\\Vert \\\\nabla f^*\\\\Vert _{L^p} \\\\leqslant 2^{1/p} \\\\Vert \\\\nabla f\\\\Vert _{L^p}$</annotation>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>⩽</mo>\\n <mi>p</mi>\\n <mo>⩽</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1 \\\\leqslant p \\\\leqslant \\\\infty$</annotation>\\n </semantics></math>. We also show the existence of (many) rearrangements on <span></span><math>\\n <semantics>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\mathbb {Z}^d$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>∥</mo>\\n <mo>∇</mo>\\n </mrow>\\n <msup>\\n <mi>f</mi>\\n <mo>∗</mo>\\n </msup>\\n <msub>\\n <mo>∥</mo>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n </msub>\\n <mo>⩽</mo>\\n <msub>\\n <mi>c</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>·</mo>\\n <msub>\\n <mrow>\\n <mo>∥</mo>\\n <mo>∇</mo>\\n <mi>f</mi>\\n <mo>∥</mo>\\n </mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n </msub>\\n </mrow>\\n <annotation>$\\\\Vert \\\\nabla f^*\\\\Vert _{L^p} \\\\leqslant c_d \\\\cdot \\\\Vert \\\\nabla f\\\\Vert _{L^p}$</annotation>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>⩽</mo>\\n <mi>p</mi>\\n <mo>⩽</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1 \\\\leqslant p \\\\leqslant \\\\infty$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 10\",\"pages\":\"3145-3163\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13122\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13122","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Polya-Szegő 不等式指出,给定一个非负函数 , 其球形对称递减重排在对于所有函数 , 的意义上更 "平滑"。我们研究晶格网格图上的类比。已知螺旋重排满足 Polya-Szegő 不等式 ,Wang-Wang 重排满足 ,没有重排能满足 。我们开发了一种稳健的方法来证明这两种重排都满足 Polya-Szegő 不等式,且对所有 .特别是,王-王重排满足所有 .我们还证明了(许多)重排的存在,使得对于所有 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rearrangement inequalities on the lattice graph

The Polya–Szegő inequality in R n $\mathbb {R}^n$ states that, given a nonnegative function f : R n R $f:\mathbb {R}^{n} \rightarrow \mathbb {R}$ , its spherically symmetric decreasing rearrangement f : R n R $f^*:\mathbb {R}^{n} \rightarrow \mathbb {R}$ is ‘smoother’ in the sense of f L p f L p $\Vert \nabla f^*\Vert _{L^p} \leqslant \Vert \nabla f\Vert _{L^p}$ for all 1 p $1 \leqslant p \leqslant \infty$ . We study analogues on the lattice grid graph Z 2 $\mathbb {Z}^2$ . The spiral rearrangement is known to satisfy the Polya–Szegő inequality for p = 1 $p=1$ , the Wang-Wang rearrangement satisfies it for p = $p=\infty$ and no rearrangement can satisfy it for p = 2 $p=2$ . We develop a robust approach to show that both these rearrangements satisfy the Polya–Szegő inequality up to a constant for all 1 p $1 \leqslant p \leqslant \infty$ . In particular, the Wang-Wang rearrangement satisfies f L p 2 1 / p f L p $\Vert \nabla f^*\Vert _{L^p} \leqslant 2^{1/p} \Vert \nabla f\Vert _{L^p}$ for all 1 p $1 \leqslant p \leqslant \infty$ . We also show the existence of (many) rearrangements on Z d $\mathbb {Z}^d$ such that f L p c d · f L p $\Vert \nabla f^*\Vert _{L^p} \leqslant c_d \cdot \Vert \nabla f\Vert _{L^p}$ for all 1 p $1 \leqslant p \leqslant \infty$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信