迈向图兰的多项式猜想

IF 0.8 3区 数学 Q2 MATHEMATICS
Pradipto Banerjee, Amit Kundu
{"title":"迈向图兰的多项式猜想","authors":"Pradipto Banerjee,&nbsp;Amit Kundu","doi":"10.1112/blms.13123","DOIUrl":null,"url":null,"abstract":"<p>We revisit an old problem posed by P. Turán asking whether there exists an absolute constant <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$C&amp;gt;0$</annotation>\n </semantics></math> such that if <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n <mo>∈</mo>\n <mi>Z</mi>\n <mo>[</mo>\n <mi>x</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$f(x)\\in \\mathbb {Z}[x]$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mo>deg</mo>\n <mi>f</mi>\n <mo>=</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$\\deg f = d$</annotation>\n </semantics></math>, then there is a polynomial <span></span><math>\n <semantics>\n <mrow>\n <mi>w</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n <mo>∈</mo>\n <mi>Z</mi>\n <mo>[</mo>\n <mi>x</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$w(x)\\in \\mathbb {Z}[x]$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mo>deg</mo>\n <mi>w</mi>\n <mo>⩽</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$\\deg w\\leqslant d$</annotation>\n </semantics></math> and the sum of the absolute values of the coefficients of <span></span><math>\n <semantics>\n <mrow>\n <mi>w</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$w(x)$</annotation>\n </semantics></math> is less than or equal to <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> such that the sum <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n <mo>+</mo>\n <mi>w</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(x)+w(x)$</annotation>\n </semantics></math> is irreducible over <span></span><math>\n <semantics>\n <mi>Q</mi>\n <annotation>$\\mathbb {Q}$</annotation>\n </semantics></math>. In 1970, A. Schinzel obtained a partial answer establishing the existence of an <span></span><math>\n <semantics>\n <mrow>\n <mi>w</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$w(x)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$C=3$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>deg</mo>\n <mi>w</mi>\n <mo>&lt;</mo>\n <mi>exp</mi>\n <mo>(</mo>\n <mrow>\n <mo>(</mo>\n <mn>5</mn>\n <mi>d</mi>\n <mo>+</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n <mo>(</mo>\n <mo>∥</mo>\n <mi>f</mi>\n <mo>∥</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>3</mn>\n <mrow>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\deg w &amp;lt; \\exp ((5d +7) (\\Vert f\\Vert ^{2}+3))$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>∥</mo>\n <mi>f</mi>\n <mo>∥</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <annotation>$\\Vert f\\Vert ^{2}$</annotation>\n </semantics></math> is the sum of the squares of the coefficients of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(x)$</annotation>\n </semantics></math>. Schinzel's result was further refined by P. Banerjee and M. Filaseta in 2010, obtaining <span></span><math>\n <semantics>\n <mrow>\n <mo>deg</mo>\n <mi>w</mi>\n <mo>≪</mo>\n <mi>d</mi>\n <mi>exp</mi>\n <mo>(</mo>\n <mn>8</mn>\n <mo>∥</mo>\n <mi>f</mi>\n <msup>\n <mo>∥</mo>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>9</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\deg w \\ll d \\exp (8\\Vert f\\Vert ^{2}+9)$</annotation>\n </semantics></math> with an absolute implied constant. The main contribution of the current work lies in establishing the existence of <span></span><math>\n <semantics>\n <mrow>\n <mi>w</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$w(x)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>=</mo>\n <mn>6</mn>\n </mrow>\n <annotation>$C = 6$</annotation>\n </semantics></math> with a significantly improved upper bound on <span></span><math>\n <semantics>\n <mrow>\n <mo>deg</mo>\n <mi>w</mi>\n </mrow>\n <annotation>$\\deg w$</annotation>\n </semantics></math>. For instance, our main result implies the existence of an explicit <span></span><math>\n <semantics>\n <mrow>\n <mi>w</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$w(x)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>=</mo>\n <mn>6</mn>\n </mrow>\n <annotation>$C=6$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mo>deg</mo>\n <mi>w</mi>\n <mo>≪</mo>\n <mi>d</mi>\n <msup>\n <mi>log</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mo>∥</mo>\n <mi>f</mi>\n <mo>∥</mo>\n <mo>+</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\deg w \\ll d \\log ^{2} (\\Vert f\\Vert +2)$</annotation>\n </semantics></math>, where the implied constant is absolute.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3164-3173"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Turán's polynomial conjecture\",\"authors\":\"Pradipto Banerjee,&nbsp;Amit Kundu\",\"doi\":\"10.1112/blms.13123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We revisit an old problem posed by P. Turán asking whether there exists an absolute constant <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$C&amp;gt;0$</annotation>\\n </semantics></math> such that if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n <mo>∈</mo>\\n <mi>Z</mi>\\n <mo>[</mo>\\n <mi>x</mi>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$f(x)\\\\in \\\\mathbb {Z}[x]$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>deg</mo>\\n <mi>f</mi>\\n <mo>=</mo>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$\\\\deg f = d$</annotation>\\n </semantics></math>, then there is a polynomial <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>w</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n <mo>∈</mo>\\n <mi>Z</mi>\\n <mo>[</mo>\\n <mi>x</mi>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$w(x)\\\\in \\\\mathbb {Z}[x]$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>deg</mo>\\n <mi>w</mi>\\n <mo>⩽</mo>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$\\\\deg w\\\\leqslant d$</annotation>\\n </semantics></math> and the sum of the absolute values of the coefficients of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>w</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$w(x)$</annotation>\\n </semantics></math> is less than or equal to <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$C$</annotation>\\n </semantics></math> such that the sum <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n <mo>+</mo>\\n <mi>w</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(x)+w(x)$</annotation>\\n </semantics></math> is irreducible over <span></span><math>\\n <semantics>\\n <mi>Q</mi>\\n <annotation>$\\\\mathbb {Q}$</annotation>\\n </semantics></math>. In 1970, A. Schinzel obtained a partial answer establishing the existence of an <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>w</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$w(x)$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$C=3$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>deg</mo>\\n <mi>w</mi>\\n <mo>&lt;</mo>\\n <mi>exp</mi>\\n <mo>(</mo>\\n <mrow>\\n <mo>(</mo>\\n <mn>5</mn>\\n <mi>d</mi>\\n <mo>+</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n <mo>(</mo>\\n <mo>∥</mo>\\n <mi>f</mi>\\n <mo>∥</mo>\\n </mrow>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>3</mn>\\n <mrow>\\n <mo>)</mo>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\deg w &amp;lt; \\\\exp ((5d +7) (\\\\Vert f\\\\Vert ^{2}+3))$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <msup>\\n <mrow>\\n <mo>∥</mo>\\n <mi>f</mi>\\n <mo>∥</mo>\\n </mrow>\\n <mn>2</mn>\\n </msup>\\n <annotation>$\\\\Vert f\\\\Vert ^{2}$</annotation>\\n </semantics></math> is the sum of the squares of the coefficients of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(x)$</annotation>\\n </semantics></math>. Schinzel's result was further refined by P. Banerjee and M. Filaseta in 2010, obtaining <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>deg</mo>\\n <mi>w</mi>\\n <mo>≪</mo>\\n <mi>d</mi>\\n <mi>exp</mi>\\n <mo>(</mo>\\n <mn>8</mn>\\n <mo>∥</mo>\\n <mi>f</mi>\\n <msup>\\n <mo>∥</mo>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>9</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\deg w \\\\ll d \\\\exp (8\\\\Vert f\\\\Vert ^{2}+9)$</annotation>\\n </semantics></math> with an absolute implied constant. The main contribution of the current work lies in establishing the existence of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>w</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$w(x)$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>=</mo>\\n <mn>6</mn>\\n </mrow>\\n <annotation>$C = 6$</annotation>\\n </semantics></math> with a significantly improved upper bound on <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>deg</mo>\\n <mi>w</mi>\\n </mrow>\\n <annotation>$\\\\deg w$</annotation>\\n </semantics></math>. For instance, our main result implies the existence of an explicit <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>w</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$w(x)$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>=</mo>\\n <mn>6</mn>\\n </mrow>\\n <annotation>$C=6$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>deg</mo>\\n <mi>w</mi>\\n <mo>≪</mo>\\n <mi>d</mi>\\n <msup>\\n <mi>log</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>∥</mo>\\n <mi>f</mi>\\n <mo>∥</mo>\\n <mo>+</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\deg w \\\\ll d \\\\log ^{2} (\\\\Vert f\\\\Vert +2)$</annotation>\\n </semantics></math>, where the implied constant is absolute.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 10\",\"pages\":\"3164-3173\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13123\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13123","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们重温了 P. Turán 提出的一个老问题,即是否存在一个绝对常数,使得如果与 ,则存在一个与 的多项式,且与 的系数的绝对值之和小于或等于 ,使得和在 .1970 年,A. Schinzel 得到了部分答案,证明存在一个为 的多项式,其系数的平方和为 。 2010 年,P. Banerjee 和 M. Filaseta 进一步完善了 Schinzel 的结果,得到了一个绝对隐含常数。当前工作的主要贡献在于建立了.的存在性,并显著改善了.的上限。例如,我们的主要结果意味着存在一个显式的 for,其中隐含常数是绝对的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Turán's polynomial conjecture

We revisit an old problem posed by P. Turán asking whether there exists an absolute constant C > 0 $C&gt;0$ such that if f ( x ) Z [ x ] $f(x)\in \mathbb {Z}[x]$ with deg f = d $\deg f = d$ , then there is a polynomial w ( x ) Z [ x ] $w(x)\in \mathbb {Z}[x]$ with deg w d $\deg w\leqslant d$ and the sum of the absolute values of the coefficients of w ( x ) $w(x)$ is less than or equal to C $C$ such that the sum f ( x ) + w ( x ) $f(x)+w(x)$ is irreducible over Q $\mathbb {Q}$ . In 1970, A. Schinzel obtained a partial answer establishing the existence of an w ( x ) $w(x)$ for C = 3 $C=3$ with deg w < exp ( ( 5 d + 7 ) ( f 2 + 3 ) ) $\deg w &lt; \exp ((5d +7) (\Vert f\Vert ^{2}+3))$ where f 2 $\Vert f\Vert ^{2}$ is the sum of the squares of the coefficients of f ( x ) $f(x)$ . Schinzel's result was further refined by P. Banerjee and M. Filaseta in 2010, obtaining deg w d exp ( 8 f 2 + 9 ) $\deg w \ll d \exp (8\Vert f\Vert ^{2}+9)$ with an absolute implied constant. The main contribution of the current work lies in establishing the existence of w ( x ) $w(x)$ for C = 6 $C = 6$ with a significantly improved upper bound on deg w $\deg w$ . For instance, our main result implies the existence of an explicit w ( x ) $w(x)$ for C = 6 $C=6$ with deg w d log 2 ( f + 2 ) $\deg w \ll d \log ^{2} (\Vert f\Vert +2)$ , where the implied constant is absolute.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信