翻译器质量和浮标选择对点式吸收波能转换器线性发电机功率吸收和线性发电机功率吸收的影响

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS
Tatiana Potapenko, Cecilia Boström, Irina Temiz
{"title":"翻译器质量和浮标选择对点式吸收波能转换器线性发电机功率吸收和线性发电机功率吸收的影响","authors":"Tatiana Potapenko,&nbsp;Cecilia Boström,&nbsp;Irina Temiz","doi":"10.1049/rpg2.13046","DOIUrl":null,"url":null,"abstract":"<p>Ocean waves have the potential to contribute to future renewable electricity production. A wave energy converter (WEC) is a technology developed to absorb the energy of the wave and convert it to another form of energy. The Uppsala University WEC (UU WEC) is a point absorber with a direct drive permanent magnet synchronous linear generator power take off. Among other parameters affecting the value of absorbed power for UU WEC are the buoy size, mass of the system consisting of the buoy and translator, and available wave energy at the site of interest. This study reviews the earlier static model that considered only static forces as the buoyancy and gravity forces and neglected all dynamic forces. The static model was proposed to simplify the early-stage design decision. Although the static model was applied to two UU WECs of different dimensions, the present study shows that the static model is not held for certain buoy and translator dimensions. As an alternative, the dynamic model which accounts for the impact of hydrodynamic forces and various translator masses is proposed. The dynamic model is based on Cummins' equation and the linear potential flow theory, and the damping force is approximated as a viscous damper with the constant damping coefficient optimizing the absorbed mechanical power under a particular sea condition. The dynamic model is applied to four fixed buoy geometries of two shapes (cylinder and cylinder with a moonpool), each of two different dimensions, but the method can be extended to other buoy shapes and dimensions. In addition, the impact of translator mass was assessed for two sites located on the west coast of Sweden and near Gran Canaria, Spain. A translator of 10–11 t promotes 16.8% higher annual average power absorption for a cylindrical buoy compared to a translator of 6 t for the same buoy. However, heavier translators up to 15 t provide only 1.1% increase in average annual absorbed power.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 11","pages":"1832-1845"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13046","citationCount":"0","resultStr":"{\"title\":\"Impact of translator mass and buoy choice on a power absorption of point absorbing wave energy converter linear generator with linear generator power take off\",\"authors\":\"Tatiana Potapenko,&nbsp;Cecilia Boström,&nbsp;Irina Temiz\",\"doi\":\"10.1049/rpg2.13046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ocean waves have the potential to contribute to future renewable electricity production. A wave energy converter (WEC) is a technology developed to absorb the energy of the wave and convert it to another form of energy. The Uppsala University WEC (UU WEC) is a point absorber with a direct drive permanent magnet synchronous linear generator power take off. Among other parameters affecting the value of absorbed power for UU WEC are the buoy size, mass of the system consisting of the buoy and translator, and available wave energy at the site of interest. This study reviews the earlier static model that considered only static forces as the buoyancy and gravity forces and neglected all dynamic forces. The static model was proposed to simplify the early-stage design decision. Although the static model was applied to two UU WECs of different dimensions, the present study shows that the static model is not held for certain buoy and translator dimensions. As an alternative, the dynamic model which accounts for the impact of hydrodynamic forces and various translator masses is proposed. The dynamic model is based on Cummins' equation and the linear potential flow theory, and the damping force is approximated as a viscous damper with the constant damping coefficient optimizing the absorbed mechanical power under a particular sea condition. The dynamic model is applied to four fixed buoy geometries of two shapes (cylinder and cylinder with a moonpool), each of two different dimensions, but the method can be extended to other buoy shapes and dimensions. In addition, the impact of translator mass was assessed for two sites located on the west coast of Sweden and near Gran Canaria, Spain. A translator of 10–11 t promotes 16.8% higher annual average power absorption for a cylindrical buoy compared to a translator of 6 t for the same buoy. However, heavier translators up to 15 t provide only 1.1% increase in average annual absorbed power.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"18 11\",\"pages\":\"1832-1845\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13046\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13046\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

海浪有可能为未来的可再生能源发电做出贡献。波浪能转换器(WEC)是一种用于吸收波浪能量并将其转换为另一种能量形式的技术。乌普萨拉大学的波浪能转换器(UU WEC)是一个点吸收器,带有直接驱动永磁同步直线发电机发电装置。影响 UU WEC 吸收功率值的其他参数包括浮标尺寸、由浮标和转换器组成的系统质量以及相关地点的可用波浪能。本研究回顾了早期的静态模型,该模型只考虑了浮力和重力等静态力,忽略了所有动态力。提出该静态模型是为了简化早期设计决策。尽管该静态模型适用于两个不同尺寸的 UU 型水力发电装置,但本研究表明,该静态模型对于某些浮标和平移器尺寸并不适用。作为替代方案,本研究提出了动态模型,该模型考虑了流体动力和各种翻译质量的影响。动态模型基于康明斯方程和线性势流理论,阻尼力近似为粘性阻尼器,其恒定阻尼系数可优化特定海况下吸收的机械功率。该动态模型适用于两种形状(圆柱体和带月池的圆柱体)、两种不同尺寸的四种固定浮标几何形状,但该方法可扩展到其他浮标形状和尺寸。此外,还评估了位于瑞典西海岸和西班牙大加那利岛附近的两个地点的翻译器质量的影响。对于圆柱形浮标来说,10-11 吨的转换器与 6 吨的转换器相比,年平均功率吸收提高了 16.8%。然而,重达 15 吨的平移器仅能使年平均吸收功率提高 1.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of translator mass and buoy choice on a power absorption of point absorbing wave energy converter linear generator with linear generator power take off

Impact of translator mass and buoy choice on a power absorption of point absorbing wave energy converter linear generator with linear generator power take off

Ocean waves have the potential to contribute to future renewable electricity production. A wave energy converter (WEC) is a technology developed to absorb the energy of the wave and convert it to another form of energy. The Uppsala University WEC (UU WEC) is a point absorber with a direct drive permanent magnet synchronous linear generator power take off. Among other parameters affecting the value of absorbed power for UU WEC are the buoy size, mass of the system consisting of the buoy and translator, and available wave energy at the site of interest. This study reviews the earlier static model that considered only static forces as the buoyancy and gravity forces and neglected all dynamic forces. The static model was proposed to simplify the early-stage design decision. Although the static model was applied to two UU WECs of different dimensions, the present study shows that the static model is not held for certain buoy and translator dimensions. As an alternative, the dynamic model which accounts for the impact of hydrodynamic forces and various translator masses is proposed. The dynamic model is based on Cummins' equation and the linear potential flow theory, and the damping force is approximated as a viscous damper with the constant damping coefficient optimizing the absorbed mechanical power under a particular sea condition. The dynamic model is applied to four fixed buoy geometries of two shapes (cylinder and cylinder with a moonpool), each of two different dimensions, but the method can be extended to other buoy shapes and dimensions. In addition, the impact of translator mass was assessed for two sites located on the west coast of Sweden and near Gran Canaria, Spain. A translator of 10–11 t promotes 16.8% higher annual average power absorption for a cylindrical buoy compared to a translator of 6 t for the same buoy. However, heavier translators up to 15 t provide only 1.1% increase in average annual absorbed power.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Renewable Power Generation
IET Renewable Power Generation 工程技术-工程:电子与电气
CiteScore
6.80
自引率
11.50%
发文量
268
审稿时长
6.6 months
期刊介绍: IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal. Specific technology areas covered by the journal include: Wind power technology and systems Photovoltaics Solar thermal power generation Geothermal energy Fuel cells Wave power Marine current energy Biomass conversion and power generation What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small. The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged. The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced. Current Special Issue. Call for papers: Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信