通过人工智能和机器学习优化废物管理战略--经济和环境影响研究

Reema Alsabt , Wadha Alkhaldi , Yusuf A. Adenle , Habib M. Alshuwaikhat
{"title":"通过人工智能和机器学习优化废物管理战略--经济和环境影响研究","authors":"Reema Alsabt ,&nbsp;Wadha Alkhaldi ,&nbsp;Yusuf A. Adenle ,&nbsp;Habib M. Alshuwaikhat","doi":"10.1016/j.clwas.2024.100158","DOIUrl":null,"url":null,"abstract":"<div><p>Applying artificial intelligence (AI) and machine learning (ML) techniques to optimize waste management strategies, focusing on enhancing economic efficiency and reducing environmental impact, is vital. The study utilized ML models to analyze and forecast waste generation trends, assess the viability of various waste management methods, and develop optimization models for resource allocation and operational efficiency. The research employs the World Bank’s comprehensive waste management dataset. After rigorous data preprocessing, including cleaning and feature selection, a variety of ML techniques, such as regression models, classification algorithms like Support Vector Machines (SVM), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and optimization algorithms, including linear programming, are applied. Unlike other research, this study achieved 85 % accuracy on predictive analytics models for forecasting waste generation trends, primarily attributed to integrating more diverse data sets, including socio-economic factors. Also, the optimization resource allocation achieved a 15 % increase in operational efficiency. These findings provide significant insights for policymakers and urban planners, suggesting that integrating ML in waste management can lead to more sustainable and cost-effective practices. This paper demonstrates the transformative potential of ML in optimizing waste management strategies, offering a pathway towards more sustainable and economically viable waste management solutions globally.</p></div>","PeriodicalId":100256,"journal":{"name":"Cleaner Waste Systems","volume":"8 ","pages":"Article 100158"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772912524000307/pdfft?md5=1d3832841f36490b23661c8172e0872a&pid=1-s2.0-S2772912524000307-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimizing waste management strategies through artificial intelligence and machine learning - An economic and environmental impact study\",\"authors\":\"Reema Alsabt ,&nbsp;Wadha Alkhaldi ,&nbsp;Yusuf A. Adenle ,&nbsp;Habib M. Alshuwaikhat\",\"doi\":\"10.1016/j.clwas.2024.100158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Applying artificial intelligence (AI) and machine learning (ML) techniques to optimize waste management strategies, focusing on enhancing economic efficiency and reducing environmental impact, is vital. The study utilized ML models to analyze and forecast waste generation trends, assess the viability of various waste management methods, and develop optimization models for resource allocation and operational efficiency. The research employs the World Bank’s comprehensive waste management dataset. After rigorous data preprocessing, including cleaning and feature selection, a variety of ML techniques, such as regression models, classification algorithms like Support Vector Machines (SVM), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and optimization algorithms, including linear programming, are applied. Unlike other research, this study achieved 85 % accuracy on predictive analytics models for forecasting waste generation trends, primarily attributed to integrating more diverse data sets, including socio-economic factors. Also, the optimization resource allocation achieved a 15 % increase in operational efficiency. These findings provide significant insights for policymakers and urban planners, suggesting that integrating ML in waste management can lead to more sustainable and cost-effective practices. This paper demonstrates the transformative potential of ML in optimizing waste management strategies, offering a pathway towards more sustainable and economically viable waste management solutions globally.</p></div>\",\"PeriodicalId\":100256,\"journal\":{\"name\":\"Cleaner Waste Systems\",\"volume\":\"8 \",\"pages\":\"Article 100158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772912524000307/pdfft?md5=1d3832841f36490b23661c8172e0872a&pid=1-s2.0-S2772912524000307-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Waste Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772912524000307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Waste Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772912524000307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

应用人工智能(AI)和机器学习(ML)技术来优化废物管理战略,重点是提高经济效益和减少对环境的影响,这一点至关重要。这项研究利用 ML 模型来分析和预测废物产生趋势,评估各种废物管理方法的可行性,并为资源分配和运营效率开发优化模型。研究采用了世界银行的综合废物管理数据集。在经过严格的数据预处理(包括清理和特征选择)后,应用了多种 ML 技术,如回归模型、分类算法(如支持向量机 (SVM)、随机森林 (RF)、极端梯度提升 (XGBoost))以及优化算法(包括线性规划)。与其他研究不同的是,这项研究的预测分析模型在预测废物产生趋势方面达到了 85% 的准确率,这主要归功于整合了更多样化的数据集,包括社会经济因素。此外,优化资源配置使运营效率提高了 15%。这些发现为政策制定者和城市规划者提供了重要启示,表明在废物管理中集成 ML 可以带来更具可持续性和成本效益的做法。本文展示了人工智能在优化废物管理策略方面的变革潜力,为全球提供了一条通往更具可持续性和经济可行性的废物管理解决方案的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing waste management strategies through artificial intelligence and machine learning - An economic and environmental impact study

Applying artificial intelligence (AI) and machine learning (ML) techniques to optimize waste management strategies, focusing on enhancing economic efficiency and reducing environmental impact, is vital. The study utilized ML models to analyze and forecast waste generation trends, assess the viability of various waste management methods, and develop optimization models for resource allocation and operational efficiency. The research employs the World Bank’s comprehensive waste management dataset. After rigorous data preprocessing, including cleaning and feature selection, a variety of ML techniques, such as regression models, classification algorithms like Support Vector Machines (SVM), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and optimization algorithms, including linear programming, are applied. Unlike other research, this study achieved 85 % accuracy on predictive analytics models for forecasting waste generation trends, primarily attributed to integrating more diverse data sets, including socio-economic factors. Also, the optimization resource allocation achieved a 15 % increase in operational efficiency. These findings provide significant insights for policymakers and urban planners, suggesting that integrating ML in waste management can lead to more sustainable and cost-effective practices. This paper demonstrates the transformative potential of ML in optimizing waste management strategies, offering a pathway towards more sustainable and economically viable waste management solutions globally.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信