氯化钙水合物的水化和潮解行为

IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Shaoheng Wang, Amelie Stahlbuhk, Michael Steiger
{"title":"氯化钙水合物的水化和潮解行为","authors":"Shaoheng Wang,&nbsp;Amelie Stahlbuhk,&nbsp;Michael Steiger","doi":"10.1016/j.fluid.2024.114171","DOIUrl":null,"url":null,"abstract":"<div><p>The phase transitions of calcium chloride between various hydrates and solid–liquid phase transitions are common in many natural and industrial processes. Recent studies have revealed some discrepancies in investigating the hydration and deliquescence of calcium chloride using different methods. In this study, water vapor sorption analysis and Raman measurements on CaCl<sub>2</sub>·2H<sub>2</sub>O and CaCl<sub>2</sub>·6H<sub>2</sub>O and their dehydration products were conducted. The results indicate two possible hydration sequences from lower hydrates to deliquescence at 298.15 K: (1) Hydration of the monohydrate to the dihydrate, followed by the formation of β-CaCl<sub>2</sub>·4H<sub>2</sub>O, ending with its deliquescence at 18.5 % RH; (2) Hydration of the monohydrate to the dihydrate, followed by the formation of α-CaCl<sub>2</sub>·4H<sub>2</sub>O and of the hexahydrate, ending with its deliquescence at 29 % RH. It was observed that the transition from pure dihydrate to β-CaCl<sub>2</sub>·4H<sub>2</sub>O occurs spontaneously, instead of hydration to the thermodynamically stable α-CaCl<sub>2</sub>·4H<sub>2</sub>O. The latter phase is only formed in the presence of crystal seeds of α-CaCl<sub>2</sub>·4H<sub>2</sub>O that remained after dehydration. Additionally, direct deliquescence of β-CaCl<sub>2</sub>·4H<sub>2</sub>O and thus absence of hydration to hexahydrate at 298.15 K is reported for the first time, which could be explained by the more similar lattice structure of CaCl<sub>2</sub>·2H<sub>2</sub>O (orthorhombic) and β-CaCl<sub>2</sub>·4H<sub>2</sub>O (monoclinic) than α-CaCl<sub>2</sub>·4H<sub>2</sub>O (triclinic). Apart from that, an explanation for the observed transformation sequence is proposed, considering the impact of the enhanced solubility of β-CaCl<sub>2</sub>·4H<sub>2</sub>O compared to the α-CaCl<sub>2</sub>·4H<sub>2</sub>O. The resulting water to salt ratio below six may contribute to the absence of CaCl<sub>2</sub>·6H<sub>2</sub>O formation. A Raman spectrum of CaCl<sub>2</sub>·H<sub>2</sub>O not reported previously is also provided.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"585 ","pages":"Article 114171"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S037838122400147X/pdfft?md5=66e44d2e4b4a0ca219c35d7358a958d4&pid=1-s2.0-S037838122400147X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydration and deliquescence behavior of calcium chloride hydrates\",\"authors\":\"Shaoheng Wang,&nbsp;Amelie Stahlbuhk,&nbsp;Michael Steiger\",\"doi\":\"10.1016/j.fluid.2024.114171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The phase transitions of calcium chloride between various hydrates and solid–liquid phase transitions are common in many natural and industrial processes. Recent studies have revealed some discrepancies in investigating the hydration and deliquescence of calcium chloride using different methods. In this study, water vapor sorption analysis and Raman measurements on CaCl<sub>2</sub>·2H<sub>2</sub>O and CaCl<sub>2</sub>·6H<sub>2</sub>O and their dehydration products were conducted. The results indicate two possible hydration sequences from lower hydrates to deliquescence at 298.15 K: (1) Hydration of the monohydrate to the dihydrate, followed by the formation of β-CaCl<sub>2</sub>·4H<sub>2</sub>O, ending with its deliquescence at 18.5 % RH; (2) Hydration of the monohydrate to the dihydrate, followed by the formation of α-CaCl<sub>2</sub>·4H<sub>2</sub>O and of the hexahydrate, ending with its deliquescence at 29 % RH. It was observed that the transition from pure dihydrate to β-CaCl<sub>2</sub>·4H<sub>2</sub>O occurs spontaneously, instead of hydration to the thermodynamically stable α-CaCl<sub>2</sub>·4H<sub>2</sub>O. The latter phase is only formed in the presence of crystal seeds of α-CaCl<sub>2</sub>·4H<sub>2</sub>O that remained after dehydration. Additionally, direct deliquescence of β-CaCl<sub>2</sub>·4H<sub>2</sub>O and thus absence of hydration to hexahydrate at 298.15 K is reported for the first time, which could be explained by the more similar lattice structure of CaCl<sub>2</sub>·2H<sub>2</sub>O (orthorhombic) and β-CaCl<sub>2</sub>·4H<sub>2</sub>O (monoclinic) than α-CaCl<sub>2</sub>·4H<sub>2</sub>O (triclinic). Apart from that, an explanation for the observed transformation sequence is proposed, considering the impact of the enhanced solubility of β-CaCl<sub>2</sub>·4H<sub>2</sub>O compared to the α-CaCl<sub>2</sub>·4H<sub>2</sub>O. The resulting water to salt ratio below six may contribute to the absence of CaCl<sub>2</sub>·6H<sub>2</sub>O formation. A Raman spectrum of CaCl<sub>2</sub>·H<sub>2</sub>O not reported previously is also provided.</p></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"585 \",\"pages\":\"Article 114171\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S037838122400147X/pdfft?md5=66e44d2e4b4a0ca219c35d7358a958d4&pid=1-s2.0-S037838122400147X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037838122400147X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838122400147X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氯化钙在各种水合物之间的相变以及固液相变在许多自然和工业过程中都很常见。最近的研究发现,使用不同方法研究氯化钙的水合和潮解存在一些差异。本研究对 CaCl2-2H2O 和 CaCl2-6H2O 及其脱水产物进行了水蒸气吸附分析和拉曼测量。结果表明,在 298.15 K 下,从低水合物到潮解有两种可能的水合顺序:(1)一水合物水合到二水合物,然后形成 β-CaCl2-4H2O,最后在 18.5 % 相对湿度下潮解;(2)一水合物水合到二水合物,然后形成 α-CaCl2-4H2O 和六水合物,最后在 29 % 相对湿度下潮解。据观察,从纯二水合物到 β-CaCl2-4H2O 的转变是自发发生的,而不是水合到热力学上稳定的 α-CaCl2-4H2O。只有在脱水后残留的 α-CaCl2-4H2O 结晶种子存在的情况下,才会形成后一种相。此外,在 298.15 K 下,β-CaCl2-4H2O 直接潮解,因而没有水合六水合物的现象也是首次报道,这可以用 CaCl2-2H2O(正交菱形)和 β-CaCl2-4H2O(单斜)的晶格结构比 α-CaCl2-4H2O(三斜)更相似来解释。除此以外,考虑到 β-CaCl2-4H2O 的溶解度比 α-CaCl2-4H2O 高的影响,还提出了观察到的转化顺序的解释。由此产生的水盐比低于 6 可能是没有 CaCl2-6H2O 形成的原因。此外,还提供了以前未曾报道过的 CaCl2-H2O 的拉曼光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydration and deliquescence behavior of calcium chloride hydrates

The phase transitions of calcium chloride between various hydrates and solid–liquid phase transitions are common in many natural and industrial processes. Recent studies have revealed some discrepancies in investigating the hydration and deliquescence of calcium chloride using different methods. In this study, water vapor sorption analysis and Raman measurements on CaCl2·2H2O and CaCl2·6H2O and their dehydration products were conducted. The results indicate two possible hydration sequences from lower hydrates to deliquescence at 298.15 K: (1) Hydration of the monohydrate to the dihydrate, followed by the formation of β-CaCl2·4H2O, ending with its deliquescence at 18.5 % RH; (2) Hydration of the monohydrate to the dihydrate, followed by the formation of α-CaCl2·4H2O and of the hexahydrate, ending with its deliquescence at 29 % RH. It was observed that the transition from pure dihydrate to β-CaCl2·4H2O occurs spontaneously, instead of hydration to the thermodynamically stable α-CaCl2·4H2O. The latter phase is only formed in the presence of crystal seeds of α-CaCl2·4H2O that remained after dehydration. Additionally, direct deliquescence of β-CaCl2·4H2O and thus absence of hydration to hexahydrate at 298.15 K is reported for the first time, which could be explained by the more similar lattice structure of CaCl2·2H2O (orthorhombic) and β-CaCl2·4H2O (monoclinic) than α-CaCl2·4H2O (triclinic). Apart from that, an explanation for the observed transformation sequence is proposed, considering the impact of the enhanced solubility of β-CaCl2·4H2O compared to the α-CaCl2·4H2O. The resulting water to salt ratio below six may contribute to the absence of CaCl2·6H2O formation. A Raman spectrum of CaCl2·H2O not reported previously is also provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信