Sahar Jafari Daghalian Sofla, Alejandro D. Rey, Phillip Servio
{"title":"氢笼占位对 sII 水合物机械特性和弹性各向异性的影响","authors":"Sahar Jafari Daghalian Sofla, Alejandro D. Rey, Phillip Servio","doi":"10.1016/j.fluid.2024.114172","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate the composition-dependent mechanical properties and elastic anisotropies of sII hydrogen hydrates using first-principles method. The evaluation of the elastic moduli and their direction dependency is achieved by computing the second-order elastic constants (SOECs) of the unit lattice. The various trends of elastic constants with the hydrogen composition of the cages introduces variations in the bonding strength, compressibility, stiffness, and shear properties of the structure which are captured by the Poisson's ratio, bulk, Young, and shear moduli, respectively. Elastic properties were found to be significantly influenced by the system's anisotropy, arising from the geometry of the cages and their unique arrangement within the lattice being affected by the increase in the hydrogen occupancy of the cages. The detailed analysis of elastic anisotropies revealed shifts in the strongest and weakest directions of the material with varying the hydrogen content of the cages. The Poisson's ratio captures the anisotropic bonding strengths within the crystal structure with the hydrogen composition of the lattice, explaining the reason behind the existence of strongest and weakest directions in terms of compression, tension, and shear forces. Taken together the established structure-property-composition relations will be useful in the design and optimization of hydrogen sII hydrates for energy storage applications.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"585 ","pages":"Article 114172"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of hydrogen cage occupancy on the mechanical properties and elastic anisotropies of sII hydrates\",\"authors\":\"Sahar Jafari Daghalian Sofla, Alejandro D. Rey, Phillip Servio\",\"doi\":\"10.1016/j.fluid.2024.114172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we investigate the composition-dependent mechanical properties and elastic anisotropies of sII hydrogen hydrates using first-principles method. The evaluation of the elastic moduli and their direction dependency is achieved by computing the second-order elastic constants (SOECs) of the unit lattice. The various trends of elastic constants with the hydrogen composition of the cages introduces variations in the bonding strength, compressibility, stiffness, and shear properties of the structure which are captured by the Poisson's ratio, bulk, Young, and shear moduli, respectively. Elastic properties were found to be significantly influenced by the system's anisotropy, arising from the geometry of the cages and their unique arrangement within the lattice being affected by the increase in the hydrogen occupancy of the cages. The detailed analysis of elastic anisotropies revealed shifts in the strongest and weakest directions of the material with varying the hydrogen content of the cages. The Poisson's ratio captures the anisotropic bonding strengths within the crystal structure with the hydrogen composition of the lattice, explaining the reason behind the existence of strongest and weakest directions in terms of compression, tension, and shear forces. Taken together the established structure-property-composition relations will be useful in the design and optimization of hydrogen sII hydrates for energy storage applications.</p></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"585 \",\"pages\":\"Article 114172\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381224001481\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224001481","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Impact of hydrogen cage occupancy on the mechanical properties and elastic anisotropies of sII hydrates
In this study, we investigate the composition-dependent mechanical properties and elastic anisotropies of sII hydrogen hydrates using first-principles method. The evaluation of the elastic moduli and their direction dependency is achieved by computing the second-order elastic constants (SOECs) of the unit lattice. The various trends of elastic constants with the hydrogen composition of the cages introduces variations in the bonding strength, compressibility, stiffness, and shear properties of the structure which are captured by the Poisson's ratio, bulk, Young, and shear moduli, respectively. Elastic properties were found to be significantly influenced by the system's anisotropy, arising from the geometry of the cages and their unique arrangement within the lattice being affected by the increase in the hydrogen occupancy of the cages. The detailed analysis of elastic anisotropies revealed shifts in the strongest and weakest directions of the material with varying the hydrogen content of the cages. The Poisson's ratio captures the anisotropic bonding strengths within the crystal structure with the hydrogen composition of the lattice, explaining the reason behind the existence of strongest and weakest directions in terms of compression, tension, and shear forces. Taken together the established structure-property-composition relations will be useful in the design and optimization of hydrogen sII hydrates for energy storage applications.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.