Luis A Diaz Sanmartin, Aleksandra B Gruslova, Drew R Nolen, Marc D Feldman, Jonathan W Valvano
{"title":"利用经皮心室辅助装置上的导入装置测量左心室容积。","authors":"Luis A Diaz Sanmartin, Aleksandra B Gruslova, Drew R Nolen, Marc D Feldman, Jonathan W Valvano","doi":"10.1007/s11517-024-03168-y","DOIUrl":null,"url":null,"abstract":"<p><p>Percutaneous ventricular assist devices (pVADs) incorporated with admittance electrodes have been validated in animal studies for accurate instantaneous volumetric measurements. Since miniaturization of the pVAD profile is a priority to reduce vascular complications in patients, our study aimed to validate admittance measurements using three electrodes instead of the standard four. Complex admittance was measured between an electrode pair and a pVAD metallic blood-intake tip, both with finite element analysis and on the benchtop. The catheter and electrode arrays were first simulated inside prolate ellipsoid models of the left ventricle (LV) demonstrating current flow throughout all parts of the LV as well as minimal influence of off-center catheter placement in the recorded signal. Admittance measurements were validated in 3D-printed models of healthy and dilated hearts (100-400 mL end-diastolic volumes). Minimal interference between a pVAD motor and the current signal of our admittance system was demonstrated. A modified Wei's equation focused on three electrodes was developed to be compatible with reduced profile pVADs occurring clinically, incorporated with admittance electrodes and wires. The modified equation was compared against Wei's original equation showing improved accuracy of calculated volumes. Reducing electrode footprint can simplify the incorporation of Admittance technology on any pVAD, allowing for instantaneous recognition of native heart recovery and assistance with pVAD weaning.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"3737-3747"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of left ventricular volume with admittance incorporated onto percutaneous ventricular assist device.\",\"authors\":\"Luis A Diaz Sanmartin, Aleksandra B Gruslova, Drew R Nolen, Marc D Feldman, Jonathan W Valvano\",\"doi\":\"10.1007/s11517-024-03168-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Percutaneous ventricular assist devices (pVADs) incorporated with admittance electrodes have been validated in animal studies for accurate instantaneous volumetric measurements. Since miniaturization of the pVAD profile is a priority to reduce vascular complications in patients, our study aimed to validate admittance measurements using three electrodes instead of the standard four. Complex admittance was measured between an electrode pair and a pVAD metallic blood-intake tip, both with finite element analysis and on the benchtop. The catheter and electrode arrays were first simulated inside prolate ellipsoid models of the left ventricle (LV) demonstrating current flow throughout all parts of the LV as well as minimal influence of off-center catheter placement in the recorded signal. Admittance measurements were validated in 3D-printed models of healthy and dilated hearts (100-400 mL end-diastolic volumes). Minimal interference between a pVAD motor and the current signal of our admittance system was demonstrated. A modified Wei's equation focused on three electrodes was developed to be compatible with reduced profile pVADs occurring clinically, incorporated with admittance electrodes and wires. The modified equation was compared against Wei's original equation showing improved accuracy of calculated volumes. Reducing electrode footprint can simplify the incorporation of Admittance technology on any pVAD, allowing for instantaneous recognition of native heart recovery and assistance with pVAD weaning.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"3737-3747\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03168-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11517-024-03168-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Measurement of left ventricular volume with admittance incorporated onto percutaneous ventricular assist device.
Percutaneous ventricular assist devices (pVADs) incorporated with admittance electrodes have been validated in animal studies for accurate instantaneous volumetric measurements. Since miniaturization of the pVAD profile is a priority to reduce vascular complications in patients, our study aimed to validate admittance measurements using three electrodes instead of the standard four. Complex admittance was measured between an electrode pair and a pVAD metallic blood-intake tip, both with finite element analysis and on the benchtop. The catheter and electrode arrays were first simulated inside prolate ellipsoid models of the left ventricle (LV) demonstrating current flow throughout all parts of the LV as well as minimal influence of off-center catheter placement in the recorded signal. Admittance measurements were validated in 3D-printed models of healthy and dilated hearts (100-400 mL end-diastolic volumes). Minimal interference between a pVAD motor and the current signal of our admittance system was demonstrated. A modified Wei's equation focused on three electrodes was developed to be compatible with reduced profile pVADs occurring clinically, incorporated with admittance electrodes and wires. The modified equation was compared against Wei's original equation showing improved accuracy of calculated volumes. Reducing electrode footprint can simplify the incorporation of Admittance technology on any pVAD, allowing for instantaneous recognition of native heart recovery and assistance with pVAD weaning.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).