Sivasankaran Sivanandam, Turki J. Alqurashi, Hashim M. Alshehri
{"title":"活化能和交叉扩散效应对非达西多孔介质中三维对流旋转纳米液流的影响","authors":"Sivasankaran Sivanandam, Turki J. Alqurashi, Hashim M. Alshehri","doi":"10.1108/hff-01-2024-0008","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to investigate numerically the impact of the three-dimensional convective nanoliquid flow on a rotating frame embedded in the non-Darcy porous medium in the presence of activation energy. The cross-diffusion effects, i.e. Soret and Dufour effects, and heat generation are included in the study. The convective heating condition is applied on the bounding surface.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The control model consisted of a system of partial differential equations (PDE) with boundary constraints. Using suitable similarity transformation, the PDE transformed into an ordinary differential equation and solved numerically by the Runge–Kutta–Fehlberg method. The obtained results of velocity, temperature and solute concentration characteristics plotted to show the impact of the pertinent parameters. The heat and mass transfer rate and skin friction are also calculated.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>It is found that both Biot numbers enhance the heat and mass distribution inside the boundary layer region. The temperature increases by increasing the Dufour number, while concentration decreases by increasing the Dufour number. The heat transfer is increased up to 8.1% in the presence of activation energy parameter (<em>E</em>). But, mass transfer rate declines up to 16.6% in the presence of <em>E</em>.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>The applications of combined Dufour and Soret effects are in separation of isotopes in mixture of gases, oil reservoirs and binary alloys solidification. The nanofluid with porous medium can be used in chemical engineering, heat exchangers and nuclear reactor.</p><!--/ Abstract__block -->\n<h3>Social implications</h3>\n<p>This study is mainly useful for thermal sciences and chemical engineering.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The uniqueness in this research is the study of the impact of activation energy and cross-diffusion on rotating nanoliquid flow with heat generation and convective heating condition. The obtained results are unique and valuable, and it can be used in various fields of science and technology.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"1 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of activation energy and cross-diffusion effects on 3D convective rotating nanoliquid flow in a non-Darcy porous medium\",\"authors\":\"Sivasankaran Sivanandam, Turki J. Alqurashi, Hashim M. Alshehri\",\"doi\":\"10.1108/hff-01-2024-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This study aims to investigate numerically the impact of the three-dimensional convective nanoliquid flow on a rotating frame embedded in the non-Darcy porous medium in the presence of activation energy. The cross-diffusion effects, i.e. Soret and Dufour effects, and heat generation are included in the study. The convective heating condition is applied on the bounding surface.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The control model consisted of a system of partial differential equations (PDE) with boundary constraints. Using suitable similarity transformation, the PDE transformed into an ordinary differential equation and solved numerically by the Runge–Kutta–Fehlberg method. The obtained results of velocity, temperature and solute concentration characteristics plotted to show the impact of the pertinent parameters. The heat and mass transfer rate and skin friction are also calculated.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>It is found that both Biot numbers enhance the heat and mass distribution inside the boundary layer region. The temperature increases by increasing the Dufour number, while concentration decreases by increasing the Dufour number. The heat transfer is increased up to 8.1% in the presence of activation energy parameter (<em>E</em>). But, mass transfer rate declines up to 16.6% in the presence of <em>E</em>.</p><!--/ Abstract__block -->\\n<h3>Practical implications</h3>\\n<p>The applications of combined Dufour and Soret effects are in separation of isotopes in mixture of gases, oil reservoirs and binary alloys solidification. The nanofluid with porous medium can be used in chemical engineering, heat exchangers and nuclear reactor.</p><!--/ Abstract__block -->\\n<h3>Social implications</h3>\\n<p>This study is mainly useful for thermal sciences and chemical engineering.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The uniqueness in this research is the study of the impact of activation energy and cross-diffusion on rotating nanoliquid flow with heat generation and convective heating condition. The obtained results are unique and valuable, and it can be used in various fields of science and technology.</p><!--/ Abstract__block -->\",\"PeriodicalId\":14263,\"journal\":{\"name\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/hff-01-2024-0008\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-01-2024-0008","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Impact of activation energy and cross-diffusion effects on 3D convective rotating nanoliquid flow in a non-Darcy porous medium
Purpose
This study aims to investigate numerically the impact of the three-dimensional convective nanoliquid flow on a rotating frame embedded in the non-Darcy porous medium in the presence of activation energy. The cross-diffusion effects, i.e. Soret and Dufour effects, and heat generation are included in the study. The convective heating condition is applied on the bounding surface.
Design/methodology/approach
The control model consisted of a system of partial differential equations (PDE) with boundary constraints. Using suitable similarity transformation, the PDE transformed into an ordinary differential equation and solved numerically by the Runge–Kutta–Fehlberg method. The obtained results of velocity, temperature and solute concentration characteristics plotted to show the impact of the pertinent parameters. The heat and mass transfer rate and skin friction are also calculated.
Findings
It is found that both Biot numbers enhance the heat and mass distribution inside the boundary layer region. The temperature increases by increasing the Dufour number, while concentration decreases by increasing the Dufour number. The heat transfer is increased up to 8.1% in the presence of activation energy parameter (E). But, mass transfer rate declines up to 16.6% in the presence of E.
Practical implications
The applications of combined Dufour and Soret effects are in separation of isotopes in mixture of gases, oil reservoirs and binary alloys solidification. The nanofluid with porous medium can be used in chemical engineering, heat exchangers and nuclear reactor.
Social implications
This study is mainly useful for thermal sciences and chemical engineering.
Originality/value
The uniqueness in this research is the study of the impact of activation energy and cross-diffusion on rotating nanoliquid flow with heat generation and convective heating condition. The obtained results are unique and valuable, and it can be used in various fields of science and technology.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf