Qi Zhou, Min Tian, Yang Cao, Min Tang, Xiaohong Xiang, Lu Guo, Hongbin Lv
{"title":"YTHDC1 通过 CDK6 的 m6A 修饰加重高糖诱导的视网膜血管内皮细胞损伤。","authors":"Qi Zhou, Min Tian, Yang Cao, Min Tang, Xiaohong Xiang, Lu Guo, Hongbin Lv","doi":"10.1186/s13062-024-00498-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Retinal vascular endothelial cell (RVECs) injury is a major cause of morbidity and mortality among the patients with diabetes. RVECs dysfunction is the predominant pathological manifestation of vascular complication in diabetic retinopathy. N6-methyladenosine (m6A) serves as the most prevalent modification in eukaryotic mRNAs. However, the role of m6A RNA modification in RVECs dysfunction is still unclear.</p><p><strong>Methods: </strong>RT-qPCR analysis and western blot were conducted to detect the change of m6A RNA modification in diabetic retinopathy. CCK-8 assay, transwell experiment, wound healing assay, tube formation experiment, m6A-IP-qPCR were performed to determine the role of YTHDC1 in RVECs. Retinal trypsin digestion test and H&E staining were used to evaluate histopathological changes.</p><p><strong>Results: </strong>The levels of m6A RNA methylation were significantly up-regulated in HG-induced RVECs, which were caused by increased expression of YTHDC1. YTHDC1 regulated the viability, proliferation, migration and tube formation ability in vitro. YTHDC1 overexpression impaired RVECs function by repressing CDK6 expression, which was mediated by YTHDC1-dependent mRNA decay. Moreover, it showed sh-YTHDC1 inhibited CDK6 nuclear export. Sh-YTHDC1 promotes the mRNA degradation of CDK6 in the nucleus but does not affect the cytoplasmic CDK6 mRNA. In vivo experiments showed that overexpression of CDK6 reversed the protective effect of sh-YTHDC1 on STZ-induced retinal tissue damage.</p><p><strong>Conclusion: </strong>YTHDC1-mediated m6A methylation regulates diabetes-induced RVECs dysfunction. YTHDC1-CDK6 signaling axis could be therapeutically targeted for treating DR.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"54"},"PeriodicalIF":5.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229198/pdf/","citationCount":"0","resultStr":"{\"title\":\"YTHDC1 aggravates high glucose-induced retinal vascular endothelial cell injury via m6A modification of CDK6.\",\"authors\":\"Qi Zhou, Min Tian, Yang Cao, Min Tang, Xiaohong Xiang, Lu Guo, Hongbin Lv\",\"doi\":\"10.1186/s13062-024-00498-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Retinal vascular endothelial cell (RVECs) injury is a major cause of morbidity and mortality among the patients with diabetes. RVECs dysfunction is the predominant pathological manifestation of vascular complication in diabetic retinopathy. N6-methyladenosine (m6A) serves as the most prevalent modification in eukaryotic mRNAs. However, the role of m6A RNA modification in RVECs dysfunction is still unclear.</p><p><strong>Methods: </strong>RT-qPCR analysis and western blot were conducted to detect the change of m6A RNA modification in diabetic retinopathy. CCK-8 assay, transwell experiment, wound healing assay, tube formation experiment, m6A-IP-qPCR were performed to determine the role of YTHDC1 in RVECs. Retinal trypsin digestion test and H&E staining were used to evaluate histopathological changes.</p><p><strong>Results: </strong>The levels of m6A RNA methylation were significantly up-regulated in HG-induced RVECs, which were caused by increased expression of YTHDC1. YTHDC1 regulated the viability, proliferation, migration and tube formation ability in vitro. YTHDC1 overexpression impaired RVECs function by repressing CDK6 expression, which was mediated by YTHDC1-dependent mRNA decay. Moreover, it showed sh-YTHDC1 inhibited CDK6 nuclear export. Sh-YTHDC1 promotes the mRNA degradation of CDK6 in the nucleus but does not affect the cytoplasmic CDK6 mRNA. In vivo experiments showed that overexpression of CDK6 reversed the protective effect of sh-YTHDC1 on STZ-induced retinal tissue damage.</p><p><strong>Conclusion: </strong>YTHDC1-mediated m6A methylation regulates diabetes-induced RVECs dysfunction. YTHDC1-CDK6 signaling axis could be therapeutically targeted for treating DR.</p>\",\"PeriodicalId\":9164,\"journal\":{\"name\":\"Biology Direct\",\"volume\":\"19 1\",\"pages\":\"54\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229198/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13062-024-00498-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-024-00498-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
YTHDC1 aggravates high glucose-induced retinal vascular endothelial cell injury via m6A modification of CDK6.
Objective: Retinal vascular endothelial cell (RVECs) injury is a major cause of morbidity and mortality among the patients with diabetes. RVECs dysfunction is the predominant pathological manifestation of vascular complication in diabetic retinopathy. N6-methyladenosine (m6A) serves as the most prevalent modification in eukaryotic mRNAs. However, the role of m6A RNA modification in RVECs dysfunction is still unclear.
Methods: RT-qPCR analysis and western blot were conducted to detect the change of m6A RNA modification in diabetic retinopathy. CCK-8 assay, transwell experiment, wound healing assay, tube formation experiment, m6A-IP-qPCR were performed to determine the role of YTHDC1 in RVECs. Retinal trypsin digestion test and H&E staining were used to evaluate histopathological changes.
Results: The levels of m6A RNA methylation were significantly up-regulated in HG-induced RVECs, which were caused by increased expression of YTHDC1. YTHDC1 regulated the viability, proliferation, migration and tube formation ability in vitro. YTHDC1 overexpression impaired RVECs function by repressing CDK6 expression, which was mediated by YTHDC1-dependent mRNA decay. Moreover, it showed sh-YTHDC1 inhibited CDK6 nuclear export. Sh-YTHDC1 promotes the mRNA degradation of CDK6 in the nucleus but does not affect the cytoplasmic CDK6 mRNA. In vivo experiments showed that overexpression of CDK6 reversed the protective effect of sh-YTHDC1 on STZ-induced retinal tissue damage.
Conclusion: YTHDC1-mediated m6A methylation regulates diabetes-induced RVECs dysfunction. YTHDC1-CDK6 signaling axis could be therapeutically targeted for treating DR.
期刊介绍:
Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.