泛素招募嵌合体:不仅仅是 PROTAC。

IF 5.7 2区 生物学 Q1 BIOLOGY
Tatyana A Grigoreva, Daria S Novikova, Gerry Melino, Nick A Barlev, Vyacheslav G Tribulovich
{"title":"泛素招募嵌合体:不仅仅是 PROTAC。","authors":"Tatyana A Grigoreva, Daria S Novikova, Gerry Melino, Nick A Barlev, Vyacheslav G Tribulovich","doi":"10.1186/s13062-024-00497-8","DOIUrl":null,"url":null,"abstract":"<p><p>Ubiquitinylation of protein substrates results in various but distinct biological consequences, among which ubiquitin-mediated degradation is most well studied for its therapeutic application. Accordingly, artificially targeted ubiquitin-dependent degradation of various proteins has evolved into the therapeutically relevant PROTAC technology. This tethered ubiquitinylation of various targets coupled with a broad assortment of modifying E3 ubiquitin ligases has been made possible by rational design of bi-specific chimeric molecules that bring these proteins in proximity. However, forced ubiquitinylation inflicted by the binary warheads of a chimeric PROTAC molecule should not necessarily result in protein degradation but can be used to modulate other cellular functions. In this respect it should be noted that the ubiquitinylation of a diverse set of proteins is known to control their transport, transcriptional activity, and protein-protein interactions. This review provides examples of potential PROTAC usage based on non-degradable ubiquitinylation.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"55"},"PeriodicalIF":5.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232244/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ubiquitin recruiting chimera: more than just a PROTAC.\",\"authors\":\"Tatyana A Grigoreva, Daria S Novikova, Gerry Melino, Nick A Barlev, Vyacheslav G Tribulovich\",\"doi\":\"10.1186/s13062-024-00497-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ubiquitinylation of protein substrates results in various but distinct biological consequences, among which ubiquitin-mediated degradation is most well studied for its therapeutic application. Accordingly, artificially targeted ubiquitin-dependent degradation of various proteins has evolved into the therapeutically relevant PROTAC technology. This tethered ubiquitinylation of various targets coupled with a broad assortment of modifying E3 ubiquitin ligases has been made possible by rational design of bi-specific chimeric molecules that bring these proteins in proximity. However, forced ubiquitinylation inflicted by the binary warheads of a chimeric PROTAC molecule should not necessarily result in protein degradation but can be used to modulate other cellular functions. In this respect it should be noted that the ubiquitinylation of a diverse set of proteins is known to control their transport, transcriptional activity, and protein-protein interactions. This review provides examples of potential PROTAC usage based on non-degradable ubiquitinylation.</p>\",\"PeriodicalId\":9164,\"journal\":{\"name\":\"Biology Direct\",\"volume\":\"19 1\",\"pages\":\"55\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232244/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13062-024-00497-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-024-00497-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质底物的泛素化会导致各种不同的生物学后果,其中泛素介导的降解在治疗应用方面的研究最为深入。因此,人工靶向泛素依赖性降解各种蛋白质已发展成为具有治疗意义的 PROTAC 技术。通过合理设计能使这些蛋白质接近的双特异性嵌合分子,各种靶标的系留泛素化与各种各样的修饰 E3 泛素连接酶得以实现。不过,由嵌合 PROTAC 分子的二元弹头造成的强制泛素化并不一定会导致蛋白质降解,而是可以用来调节其他细胞功能。在这方面,应该指出的是,众所周知,不同蛋白质的泛素化可以控制它们的运输、转录活性以及蛋白质之间的相互作用。本综述将举例说明基于不可降解泛素化的潜在 PROTAC 用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ubiquitin recruiting chimera: more than just a PROTAC.

Ubiquitinylation of protein substrates results in various but distinct biological consequences, among which ubiquitin-mediated degradation is most well studied for its therapeutic application. Accordingly, artificially targeted ubiquitin-dependent degradation of various proteins has evolved into the therapeutically relevant PROTAC technology. This tethered ubiquitinylation of various targets coupled with a broad assortment of modifying E3 ubiquitin ligases has been made possible by rational design of bi-specific chimeric molecules that bring these proteins in proximity. However, forced ubiquitinylation inflicted by the binary warheads of a chimeric PROTAC molecule should not necessarily result in protein degradation but can be used to modulate other cellular functions. In this respect it should be noted that the ubiquitinylation of a diverse set of proteins is known to control their transport, transcriptional activity, and protein-protein interactions. This review provides examples of potential PROTAC usage based on non-degradable ubiquitinylation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology Direct
Biology Direct 生物-生物学
CiteScore
6.40
自引率
10.90%
发文量
32
审稿时长
7 months
期刊介绍: Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信