{"title":"用于异构代理轨迹预测的自我规划引导多图卷积网络","authors":"Zihao Sheng, Zilin Huang, Sikai Chen","doi":"10.1111/mice.13301","DOIUrl":null,"url":null,"abstract":"<p>Accurate prediction of the future trajectories of traffic agents is a critical aspect of autonomous vehicle navigation. However, most existing approaches focus on predicting trajectories from a static roadside perspective, ignoring the influence of autonomous vehicles’ future plans on neighboring traffic agents. To address this challenge, this paper introduces EPG-MGCN, an ego-planning-guided multi-graph convolutional network. EPG-MGCN leverages graph convolutional networks and ego-planning guidance to predict the trajectories of heterogeneous traffic agents near the ego vehicle. The model captures interactions through multiple graph topologies from four distinct perspectives: distance, visibility, ego planning, and category. Additionally, it encodes the ego vehicle's planning information via the planning graph and a planning-guided prediction module. The model is evaluated on three challenging trajectory datasets: ApolloScape, nuScenes, and next generation simulation (NGSIM). Comparative evaluations against mainstream methods demonstrate its superior predictive capabilities and inference speed.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"39 22","pages":"3357-3374"},"PeriodicalIF":8.5000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13301","citationCount":"0","resultStr":"{\"title\":\"Ego-planning-guided multi-graph convolutional network for heterogeneous agent trajectory prediction\",\"authors\":\"Zihao Sheng, Zilin Huang, Sikai Chen\",\"doi\":\"10.1111/mice.13301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate prediction of the future trajectories of traffic agents is a critical aspect of autonomous vehicle navigation. However, most existing approaches focus on predicting trajectories from a static roadside perspective, ignoring the influence of autonomous vehicles’ future plans on neighboring traffic agents. To address this challenge, this paper introduces EPG-MGCN, an ego-planning-guided multi-graph convolutional network. EPG-MGCN leverages graph convolutional networks and ego-planning guidance to predict the trajectories of heterogeneous traffic agents near the ego vehicle. The model captures interactions through multiple graph topologies from four distinct perspectives: distance, visibility, ego planning, and category. Additionally, it encodes the ego vehicle's planning information via the planning graph and a planning-guided prediction module. The model is evaluated on three challenging trajectory datasets: ApolloScape, nuScenes, and next generation simulation (NGSIM). Comparative evaluations against mainstream methods demonstrate its superior predictive capabilities and inference speed.</p>\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"39 22\",\"pages\":\"3357-3374\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13301\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mice.13301\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mice.13301","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Ego-planning-guided multi-graph convolutional network for heterogeneous agent trajectory prediction
Accurate prediction of the future trajectories of traffic agents is a critical aspect of autonomous vehicle navigation. However, most existing approaches focus on predicting trajectories from a static roadside perspective, ignoring the influence of autonomous vehicles’ future plans on neighboring traffic agents. To address this challenge, this paper introduces EPG-MGCN, an ego-planning-guided multi-graph convolutional network. EPG-MGCN leverages graph convolutional networks and ego-planning guidance to predict the trajectories of heterogeneous traffic agents near the ego vehicle. The model captures interactions through multiple graph topologies from four distinct perspectives: distance, visibility, ego planning, and category. Additionally, it encodes the ego vehicle's planning information via the planning graph and a planning-guided prediction module. The model is evaluated on three challenging trajectory datasets: ApolloScape, nuScenes, and next generation simulation (NGSIM). Comparative evaluations against mainstream methods demonstrate its superior predictive capabilities and inference speed.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.