Peter K.S. Dunsby , Orlando Luongo , Marco Muccino , Vineshree Pillay
{"title":"从默纳汉状态方程看双多向宇宙加速度","authors":"Peter K.S. Dunsby , Orlando Luongo , Marco Muccino , Vineshree Pillay","doi":"10.1016/j.dark.2024.101563","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a double polytropic cosmological fluid and demonstrate that, when one constituent resembles a bare cosmological constant while the other emulates a generalized Chaplygin gas, a good description of the Universe’s large-scale dynamics is obtained. In particular, our double polytropic reduces to the Murnaghan equation of state, whose applications are already well established in solid state physics and classical thermodynamics. Intriguingly, our model approximates the conventional <span><math><mi>Λ</mi></math></span>CDM paradigm while reproducing the collective effects of logotropic and generalized Chaplygin fluids across different regimes. To check the goodness of our fluid description, we analyze first order density perturbations, refining our model through various orders of approximation, utilizing <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub></math></span> data alongside other cosmological data sets. Encouraging results suggest that our model, based on the Murnaghan equation of state, outperforms the standard cosmological background within specific approximate regimes and, on the whole, surpasses the standard phenomenological reconstruction of dark energy.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101563"},"PeriodicalIF":5.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double polytropic cosmic acceleration from the Murnaghan equation of state\",\"authors\":\"Peter K.S. Dunsby , Orlando Luongo , Marco Muccino , Vineshree Pillay\",\"doi\":\"10.1016/j.dark.2024.101563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a double polytropic cosmological fluid and demonstrate that, when one constituent resembles a bare cosmological constant while the other emulates a generalized Chaplygin gas, a good description of the Universe’s large-scale dynamics is obtained. In particular, our double polytropic reduces to the Murnaghan equation of state, whose applications are already well established in solid state physics and classical thermodynamics. Intriguingly, our model approximates the conventional <span><math><mi>Λ</mi></math></span>CDM paradigm while reproducing the collective effects of logotropic and generalized Chaplygin fluids across different regimes. To check the goodness of our fluid description, we analyze first order density perturbations, refining our model through various orders of approximation, utilizing <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub></math></span> data alongside other cosmological data sets. Encouraging results suggest that our model, based on the Murnaghan equation of state, outperforms the standard cosmological background within specific approximate regimes and, on the whole, surpasses the standard phenomenological reconstruction of dark energy.</p></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"46 \",\"pages\":\"Article 101563\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686424001456\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424001456","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Double polytropic cosmic acceleration from the Murnaghan equation of state
We consider a double polytropic cosmological fluid and demonstrate that, when one constituent resembles a bare cosmological constant while the other emulates a generalized Chaplygin gas, a good description of the Universe’s large-scale dynamics is obtained. In particular, our double polytropic reduces to the Murnaghan equation of state, whose applications are already well established in solid state physics and classical thermodynamics. Intriguingly, our model approximates the conventional CDM paradigm while reproducing the collective effects of logotropic and generalized Chaplygin fluids across different regimes. To check the goodness of our fluid description, we analyze first order density perturbations, refining our model through various orders of approximation, utilizing data alongside other cosmological data sets. Encouraging results suggest that our model, based on the Murnaghan equation of state, outperforms the standard cosmological background within specific approximate regimes and, on the whole, surpasses the standard phenomenological reconstruction of dark energy.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.