ContactNet:预测蛋白质-蛋白质相互作用的基于几何的深度学习模型

Matan Halfon, Tomer Cohen, Raanan Fattal, Dina Schneidman-Duhovny
{"title":"ContactNet:预测蛋白质-蛋白质相互作用的基于几何的深度学习模型","authors":"Matan Halfon, Tomer Cohen, Raanan Fattal, Dina Schneidman-Duhovny","doi":"arxiv-2406.18314","DOIUrl":null,"url":null,"abstract":"Deep learning approaches achieved significant progress in predicting protein\nstructures. These methods are often applied to protein-protein interactions\n(PPIs) yet require Multiple Sequence Alignment (MSA) which is unavailable for\nvarious interactions, such as antibody-antigen. Computational docking methods\nare capable of sampling accurate complex models, but also produce thousands of\ninvalid configurations. The design of scoring functions for identifying\naccurate models is a long-standing challenge. We develop a novel\nattention-based Graph Neural Network (GNN), ContactNet, for classifying PPI\nmodels obtained from docking algorithms into accurate and incorrect ones. When\ntrained on docked antigen and modeled antibody structures, ContactNet doubles\nthe accuracy of current state-of-the-art scoring functions, achieving accurate\nmodels among its Top-10 at 43% of the test cases. When applied to unbound\nantibodies, its Top-10 accuracy increases to 65%. This performance is achieved\nwithout MSA and the approach is applicable to other types of interactions, such\nas host-pathogens or general PPIs.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"2015 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ContactNet: Geometric-Based Deep Learning Model for Predicting Protein-Protein Interactions\",\"authors\":\"Matan Halfon, Tomer Cohen, Raanan Fattal, Dina Schneidman-Duhovny\",\"doi\":\"arxiv-2406.18314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning approaches achieved significant progress in predicting protein\\nstructures. These methods are often applied to protein-protein interactions\\n(PPIs) yet require Multiple Sequence Alignment (MSA) which is unavailable for\\nvarious interactions, such as antibody-antigen. Computational docking methods\\nare capable of sampling accurate complex models, but also produce thousands of\\ninvalid configurations. The design of scoring functions for identifying\\naccurate models is a long-standing challenge. We develop a novel\\nattention-based Graph Neural Network (GNN), ContactNet, for classifying PPI\\nmodels obtained from docking algorithms into accurate and incorrect ones. When\\ntrained on docked antigen and modeled antibody structures, ContactNet doubles\\nthe accuracy of current state-of-the-art scoring functions, achieving accurate\\nmodels among its Top-10 at 43% of the test cases. When applied to unbound\\nantibodies, its Top-10 accuracy increases to 65%. This performance is achieved\\nwithout MSA and the approach is applicable to other types of interactions, such\\nas host-pathogens or general PPIs.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"2015 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.18314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习方法在预测蛋白质结构方面取得了重大进展。这些方法通常应用于蛋白质-蛋白质相互作用(PPIs),但需要多序列比对(MSA),而抗体-抗原等各种相互作用无法使用多序列比对(MSA)。计算对接方法能够采样精确的复杂模型,但也会产生成千上万的无效配置。设计用于识别精确模型的评分函数是一项长期挑战。我们开发了一种新颖的基于注意力的图神经网络(GNN)--ContactNet,用于将对接算法获得的PPI模型分为准确模型和错误模型。当在对接的抗原和建模的抗体结构上进行训练时,ContactNet 的准确率比目前最先进的评分函数高出一倍,在 43% 的测试案例中,准确模型跻身前十名。当应用于非结合抗体时,其 Top-10 准确率提高到 65%。这种性能是在没有 MSA 的情况下实现的,而且该方法适用于其他类型的相互作用,如宿主-病原体或一般 PPI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ContactNet: Geometric-Based Deep Learning Model for Predicting Protein-Protein Interactions
Deep learning approaches achieved significant progress in predicting protein structures. These methods are often applied to protein-protein interactions (PPIs) yet require Multiple Sequence Alignment (MSA) which is unavailable for various interactions, such as antibody-antigen. Computational docking methods are capable of sampling accurate complex models, but also produce thousands of invalid configurations. The design of scoring functions for identifying accurate models is a long-standing challenge. We develop a novel attention-based Graph Neural Network (GNN), ContactNet, for classifying PPI models obtained from docking algorithms into accurate and incorrect ones. When trained on docked antigen and modeled antibody structures, ContactNet doubles the accuracy of current state-of-the-art scoring functions, achieving accurate models among its Top-10 at 43% of the test cases. When applied to unbound antibodies, its Top-10 accuracy increases to 65%. This performance is achieved without MSA and the approach is applicable to other types of interactions, such as host-pathogens or general PPIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信