基于传感器优化布置的混合驱动框架在主轴轴承系统热误差预测中的应用

IF 3.5 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Ziquan Zhan, Bin Fang, Shaoke Wan, Yu Bai, Jun Hong, Xiaohu Li
{"title":"基于传感器优化布置的混合驱动框架在主轴轴承系统热误差预测中的应用","authors":"Ziquan Zhan,&nbsp;Bin Fang,&nbsp;Shaoke Wan,&nbsp;Yu Bai,&nbsp;Jun Hong,&nbsp;Xiaohu Li","doi":"10.1016/j.precisioneng.2024.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>The precise thermal error prediction of spindle-bearing systems (SBSs) necessitates a comprehensive analysis of information gathered from multi-source sensors. However, limited data availability due to structural constraints poses challenges to fully characterize the system state. In this study, we introduce a data-model hybrid-driven framework based on sensor optimization placement for accurate thermal error prediction of SBSs. Firstly, a thermal hypernetwork method is developed to consider uneven temperature distribution and establish a unified information fusion model for state estimation. Secondly, based on an analysis of the rapidity and robustness, robust geodesic distance-based fuzzy c-medoid clustering with a simulated annealing algorithm (RGDFCMSA) is proposed to optimize sensor placement by minimizing the information entropy of the system. Next, uncertain parameters with estimability are selected based on SIAN and Sobol’s sensitivity indicator under optimal sensor placement. Furthermore, a multilayer particle filter (MLPF) is proposed to estimate temperature fields and predict the thermal error of SBSs by fusing information from multiple sources with different fidelity. Finally, experiments under different working conditions are conducted to validate the effectiveness and accuracy of the proposed method. The result indicates that the proposed framework is capable of an accurate estimation of the global temperature field, uncertain thermal parameters and thermal errors.</p></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"89 ","pages":"Pages 174-189"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of a hybrid-driven framework based on sensor optimization placement for the thermal error prediction of the spindle-bearing system\",\"authors\":\"Ziquan Zhan,&nbsp;Bin Fang,&nbsp;Shaoke Wan,&nbsp;Yu Bai,&nbsp;Jun Hong,&nbsp;Xiaohu Li\",\"doi\":\"10.1016/j.precisioneng.2024.06.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The precise thermal error prediction of spindle-bearing systems (SBSs) necessitates a comprehensive analysis of information gathered from multi-source sensors. However, limited data availability due to structural constraints poses challenges to fully characterize the system state. In this study, we introduce a data-model hybrid-driven framework based on sensor optimization placement for accurate thermal error prediction of SBSs. Firstly, a thermal hypernetwork method is developed to consider uneven temperature distribution and establish a unified information fusion model for state estimation. Secondly, based on an analysis of the rapidity and robustness, robust geodesic distance-based fuzzy c-medoid clustering with a simulated annealing algorithm (RGDFCMSA) is proposed to optimize sensor placement by minimizing the information entropy of the system. Next, uncertain parameters with estimability are selected based on SIAN and Sobol’s sensitivity indicator under optimal sensor placement. Furthermore, a multilayer particle filter (MLPF) is proposed to estimate temperature fields and predict the thermal error of SBSs by fusing information from multiple sources with different fidelity. Finally, experiments under different working conditions are conducted to validate the effectiveness and accuracy of the proposed method. The result indicates that the proposed framework is capable of an accurate estimation of the global temperature field, uncertain thermal parameters and thermal errors.</p></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"89 \",\"pages\":\"Pages 174-189\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635924001417\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924001417","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

要对主轴轴承系统(SBS)进行精确的热误差预测,就必须对从多源传感器收集到的信息进行综合分析。然而,由于结构限制,数据可用性有限,这给全面描述系统状态带来了挑战。在本研究中,我们介绍了一种基于传感器优化布置的数据模型混合驱动框架,用于准确预测 SBS 的热误差。首先,我们开发了一种热超网络方法,以考虑不均匀的温度分布,并为状态估计建立统一的信息融合模型。其次,在分析快速性和鲁棒性的基础上,提出了基于大地距离的鲁棒模糊 c-medoid 聚类与模拟退火算法(RGDFCMSA),通过最小化系统的信息熵来优化传感器的布置。接着,根据 SIAN 和 Sobol 的灵敏度指标,在优化传感器位置的情况下,选择具有可估计性的不确定参数。此外,还提出了一种多层粒子滤波器(MLPF),通过融合来自多个不同保真度来源的信息来估计温度场并预测 SBS 的热误差。最后,在不同的工作条件下进行了实验,以验证所提方法的有效性和准确性。结果表明,所提出的框架能够准确估计全局温度场、不确定的热参数和热误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of a hybrid-driven framework based on sensor optimization placement for the thermal error prediction of the spindle-bearing system

The precise thermal error prediction of spindle-bearing systems (SBSs) necessitates a comprehensive analysis of information gathered from multi-source sensors. However, limited data availability due to structural constraints poses challenges to fully characterize the system state. In this study, we introduce a data-model hybrid-driven framework based on sensor optimization placement for accurate thermal error prediction of SBSs. Firstly, a thermal hypernetwork method is developed to consider uneven temperature distribution and establish a unified information fusion model for state estimation. Secondly, based on an analysis of the rapidity and robustness, robust geodesic distance-based fuzzy c-medoid clustering with a simulated annealing algorithm (RGDFCMSA) is proposed to optimize sensor placement by minimizing the information entropy of the system. Next, uncertain parameters with estimability are selected based on SIAN and Sobol’s sensitivity indicator under optimal sensor placement. Furthermore, a multilayer particle filter (MLPF) is proposed to estimate temperature fields and predict the thermal error of SBSs by fusing information from multiple sources with different fidelity. Finally, experiments under different working conditions are conducted to validate the effectiveness and accuracy of the proposed method. The result indicates that the proposed framework is capable of an accurate estimation of the global temperature field, uncertain thermal parameters and thermal errors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信